1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "rfnoc_graph_mock_nodes.hpp"
#include <uhd/rfnoc/mock_block.hpp>
#include <uhd/rfnoc/actions.hpp>
#include <uhd/rfnoc/ddc_block_control.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/duc_block_control.hpp>
#include <uhd/rfnoc/null_block_control.hpp>
#include <uhdlib/rfnoc/graph.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/test/unit_test.hpp>
#include <iostream>
using namespace uhd::rfnoc;
namespace {
constexpr size_t DEFAULT_MTU = 8000;
} // namespace
BOOST_AUTO_TEST_CASE(test_null_block)
{
node_accessor_t node_accessor{};
constexpr size_t num_chans = 2;
constexpr uint32_t nipc = 2;
constexpr uint32_t item_width = 32;
constexpr noc_id_t noc_id = 0x00000001;
auto block_container = get_mock_block(noc_id, num_chans, num_chans);
// Shorthand to save typing
auto& reg_iface = block_container.reg_iface;
auto set_mem = [&](const uint32_t addr, const uint32_t data) {
reg_iface->read_memory[addr] = data;
};
auto get_mem = [&](const uint32_t addr) { return reg_iface->write_memory[addr]; };
auto copy_mem = [&](const uint32_t addr) { set_mem(addr, get_mem(addr)); };
set_mem(null_block_control::REG_CTRL_STATUS, (nipc << 24) | (item_width << 16));
auto test_null = block_container.get_block<null_block_control>();
BOOST_REQUIRE(test_null);
using uhd::stream_cmd_t;
node_accessor.init_props(test_null.get());
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
test_null->issue_stream_cmd(stream_cmd);
stream_cmd.stream_mode = stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE;
BOOST_REQUIRE_THROW(test_null->issue_stream_cmd(stream_cmd), uhd::runtime_error);
constexpr uint64_t snk_count = 1000000000;
constexpr uint64_t snk_count_pkts = 5;
constexpr uint64_t src_count = 2323232323;
constexpr uint64_t loop_count = 4242424242;
set_mem(null_block_control::REG_SNK_LINE_CNT_LO,
uhd::narrow_cast<uint32_t>(snk_count & 0xFFFFFFFF));
set_mem(null_block_control::REG_SNK_LINE_CNT_HI,
uhd::narrow_cast<uint32_t>((snk_count >> 32) & 0xFFFFFFFF));
set_mem(null_block_control::REG_SNK_PKT_CNT_LO,
uhd::narrow_cast<uint32_t>(snk_count_pkts & 0xFFFFFFFF));
set_mem(null_block_control::REG_SNK_PKT_CNT_HI,
uhd::narrow_cast<uint32_t>((snk_count_pkts >> 32) & 0xFFFFFFFF));
set_mem(null_block_control::REG_SRC_LINE_CNT_LO,
uhd::narrow_cast<uint32_t>(src_count & 0xFFFFFFFF));
set_mem(null_block_control::REG_SRC_LINE_CNT_HI,
uhd::narrow_cast<uint32_t>((src_count >> 32) & 0xFFFFFFFF));
set_mem(null_block_control::REG_LOOP_LINE_CNT_LO,
uhd::narrow_cast<uint32_t>(loop_count & 0xFFFFFFFF));
set_mem(null_block_control::REG_LOOP_LINE_CNT_HI,
uhd::narrow_cast<uint32_t>((loop_count >> 32) & 0xFFFFFFFF));
BOOST_CHECK_EQUAL(
test_null->get_count(null_block_control::SINK, null_block_control::LINES),
snk_count);
BOOST_CHECK_EQUAL(
test_null->get_count(null_block_control::SINK, null_block_control::PACKETS),
snk_count_pkts);
BOOST_CHECK_EQUAL(
test_null->get_count(null_block_control::SOURCE, null_block_control::LINES),
src_count);
BOOST_CHECK_EQUAL(
test_null->get_count(null_block_control::LOOP, null_block_control::LINES),
loop_count);
constexpr uint32_t lpp = 3;
constexpr uint32_t bpp = nipc * item_width / 8 * lpp;
test_null->set_bytes_per_packet(bpp);
copy_mem(null_block_control::REG_SRC_LINES_PER_PKT);
copy_mem(null_block_control::REG_SRC_BYTES_PER_PKT);
BOOST_CHECK_EQUAL(test_null->get_lines_per_packet(), lpp);
BOOST_CHECK_EQUAL(test_null->get_bytes_per_packet(), bpp);
auto sca = stream_cmd_action_info::make(stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
node_accessor.send_action(test_null.get(), {res_source_info::OUTPUT_EDGE, 0}, sca);
BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x2);
BOOST_REQUIRE_THROW(node_accessor.send_action(
test_null.get(), {res_source_info::OUTPUT_EDGE, 1}, sca),
uhd::runtime_error);
BOOST_REQUIRE_THROW(
node_accessor.send_action(test_null.get(), {res_source_info::INPUT_EDGE, 0}, sca),
uhd::runtime_error);
stream_cmd.stream_mode = stream_cmd_t::STREAM_MODE_START_CONTINUOUS;
test_null->issue_stream_cmd(stream_cmd);
BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x2);
node_accessor.shutdown(test_null.get());
BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x0);
test_null->issue_stream_cmd(stream_cmd);
UHD_LOG_INFO("TEST", "Expected error message here ^^^");
// The last issue_stream_cmd should do nothing b/c we called shutdown
BOOST_CHECK_EQUAL(get_mem(null_block_control::REG_CTRL_STATUS) & 0x2, 0x0);
}
BOOST_AUTO_TEST_CASE(test_ddc_block)
{
node_accessor_t node_accessor{};
constexpr uint32_t num_hb = 2;
constexpr uint32_t max_cic = 128;
constexpr size_t num_chans = 4;
constexpr noc_id_t noc_id = DDC_BLOCK;
constexpr int TEST_DECIM = 20;
auto block_container =
get_mock_block(noc_id, num_chans, num_chans, uhd::device_addr_t("foo=bar"));
auto& ddc_reg_iface = block_container.reg_iface;
ddc_reg_iface->read_memory[ddc_block_control::RB_COMPAT_NUM] =
(ddc_block_control::MAJOR_COMPAT << 16) | ddc_block_control::MINOR_COMPAT;
ddc_reg_iface->read_memory[ddc_block_control::RB_NUM_HB] = num_hb;
ddc_reg_iface->read_memory[ddc_block_control::RB_CIC_MAX_DECIM] = max_cic;
auto test_ddc = block_container.get_block<ddc_block_control>();
BOOST_REQUIRE(test_ddc);
BOOST_CHECK_EQUAL(test_ddc->get_block_args().get("foo"), "bar");
node_accessor.init_props(test_ddc.get());
UHD_LOG_DEBUG("TEST", "Init done.");
test_ddc->set_property<int>("decim", TEST_DECIM, 0);
BOOST_REQUIRE(ddc_reg_iface->write_memory.count(ddc_block_control::SR_DECIM_ADDR));
BOOST_CHECK_EQUAL(
ddc_reg_iface->write_memory.at(ddc_block_control::SR_DECIM_ADDR), 2 << 8 | 5);
BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 0}), DEFAULT_MTU);
// Now plop it in a graph
detail::graph_t graph{};
detail::graph_t::graph_edge_t edge_info;
edge_info.src_port = 0;
edge_info.dst_port = 0;
edge_info.property_propagation_active = true;
edge_info.edge = detail::graph_t::graph_edge_t::DYNAMIC;
mock_terminator_t mock_source_term(1);
mock_terminator_t mock_sink_term(1);
UHD_LOG_INFO("TEST", "Priming mock source node props");
mock_source_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::OUTPUT_EDGE, 0});
mock_source_term.set_edge_property<double>(
"scaling", 1.0, {res_source_info::OUTPUT_EDGE, 0});
mock_source_term.set_edge_property<double>(
"samp_rate", 1.0, {res_source_info::OUTPUT_EDGE, 0});
constexpr size_t NEW_MTU = 4000;
mock_source_term.set_edge_property<size_t>(
"mtu", NEW_MTU, {res_source_info::OUTPUT_EDGE, 0});
UHD_LOG_INFO("TEST", "Creating graph...");
graph.connect(&mock_source_term, test_ddc.get(), edge_info);
graph.connect(test_ddc.get(), &mock_sink_term, edge_info);
UHD_LOG_INFO("TEST", "Committing graph...");
graph.commit();
UHD_LOG_INFO("TEST", "Commit complete.");
// We need to set the decimation again, because the rates will screw it
// change it w.r.t. to the previous setting
test_ddc->set_property<int>("decim", TEST_DECIM, 0);
BOOST_CHECK_EQUAL(test_ddc->get_property<int>("decim", 0), TEST_DECIM);
BOOST_CHECK(mock_source_term.get_edge_property<double>(
"samp_rate", {res_source_info::OUTPUT_EDGE, 0})
== mock_sink_term.get_edge_property<double>(
"samp_rate", {res_source_info::INPUT_EDGE, 0})
* TEST_DECIM);
BOOST_CHECK(mock_sink_term.get_edge_property<double>(
"scaling", {res_source_info::INPUT_EDGE, 0})
!= 1.0);
UHD_LOG_INFO("TEST", "Setting freq to 1/8 of input rate");
constexpr double TEST_FREQ = 1.0 / 8;
test_ddc->set_property<double>("freq", TEST_FREQ, 0);
const uint32_t freq_word_1 =
ddc_reg_iface->write_memory.at(ddc_block_control::SR_FREQ_ADDR);
BOOST_REQUIRE(freq_word_1 != 0);
UHD_LOG_INFO("TEST", "Doubling input rate (to 2.0)");
// Now this should change the freq word, but not the absolute frequency
mock_source_term.set_edge_property<double>(
"samp_rate", 2.0, {res_source_info::OUTPUT_EDGE, 0});
const double freq_word_2 =
ddc_reg_iface->write_memory.at(ddc_block_control::SR_FREQ_ADDR);
// The frequency word is the phase increment, which will halve. We skirt
// around fixpoint/floating point accuracy issues by using CLOSE.
BOOST_CHECK_CLOSE(double(freq_word_1) / double(freq_word_2), 2.0, 1e-6);
UHD_LOG_INFO("TEST", "Testing DDC MTU propagation");
BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 0}), NEW_MTU);
BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::OUTPUT_EDGE, 0}), NEW_MTU);
BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 1}), DEFAULT_MTU);
BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::OUTPUT_EDGE, 1}), DEFAULT_MTU);
mock_source_term.set_edge_property<size_t>(
"mtu", NEW_MTU / 2, {res_source_info::OUTPUT_EDGE, 0});
BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::INPUT_EDGE, 0}), NEW_MTU / 2);
BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::OUTPUT_EDGE, 0}), NEW_MTU / 2);
// Now reset the props using set_properties
test_ddc->set_properties(uhd::device_addr_t("decim=1,freq=0.0,foo=bar"), 0);
BOOST_CHECK_EQUAL(test_ddc->get_property<int>("decim", 0), 1);
BOOST_CHECK_EQUAL(test_ddc->get_property<double>("freq", 0), 0.0);
}
BOOST_AUTO_TEST_CASE(test_duc_block)
{
node_accessor_t node_accessor{};
constexpr uint32_t num_hb = 2;
constexpr uint32_t max_cic = 128;
constexpr size_t num_chans = 4;
constexpr noc_id_t noc_id = DUC_BLOCK;
constexpr int TEST_INTERP = 20; // 2 halfbands, CIC==5
auto block_container = get_mock_block(noc_id, num_chans, num_chans);
auto& duc_reg_iface = block_container.reg_iface;
duc_reg_iface->read_memory[duc_block_control::RB_COMPAT_NUM] =
(duc_block_control::MAJOR_COMPAT << 16) | duc_block_control::MINOR_COMPAT;
duc_reg_iface->read_memory[duc_block_control::RB_NUM_HB] = num_hb;
duc_reg_iface->read_memory[duc_block_control::RB_CIC_MAX_INTERP] = max_cic;
auto test_duc = block_container.get_block<duc_block_control>();
BOOST_REQUIRE(test_duc);
node_accessor.init_props(test_duc.get());
UHD_LOG_DEBUG("TEST", "Init done.");
test_duc->set_property<int>("interp", TEST_INTERP, 0);
BOOST_REQUIRE(duc_reg_iface->write_memory.count(duc_block_control::SR_INTERP_ADDR));
BOOST_CHECK_EQUAL(
duc_reg_iface->write_memory.at(duc_block_control::SR_INTERP_ADDR), 2 << 8 | 5);
BOOST_CHECK_EQUAL(test_duc->get_mtu({res_source_info::INPUT_EDGE, 0}), DEFAULT_MTU);
// Now plop it in a graph
detail::graph_t graph{};
detail::graph_t::graph_edge_t edge_info;
edge_info.src_port = 0;
edge_info.dst_port = 0;
edge_info.property_propagation_active = true;
edge_info.edge = detail::graph_t::graph_edge_t::DYNAMIC;
mock_terminator_t mock_source_term(1, {ACTION_KEY_STREAM_CMD});
mock_terminator_t mock_sink_term(1, {ACTION_KEY_STREAM_CMD});
UHD_LOG_INFO("TEST", "Priming mock source node props");
mock_source_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::OUTPUT_EDGE, 0});
mock_source_term.set_edge_property<double>(
"scaling", 1.0, {res_source_info::OUTPUT_EDGE, 0});
mock_source_term.set_edge_property<double>(
"samp_rate", 1.0, {res_source_info::OUTPUT_EDGE, 0});
UHD_LOG_INFO("TEST", "Priming mock sink node props");
mock_sink_term.set_edge_property<std::string>(
"type", "sc16", {res_source_info::INPUT_EDGE, 0});
mock_sink_term.set_edge_property<double>(
"scaling", 1.0, {res_source_info::INPUT_EDGE, 0});
mock_sink_term.set_edge_property<double>(
"samp_rate", 1.0, {res_source_info::INPUT_EDGE, 0});
UHD_LOG_INFO("TEST", "Creating graph...");
graph.connect(&mock_source_term, test_duc.get(), edge_info);
graph.connect(test_duc.get(), &mock_sink_term, edge_info);
UHD_LOG_INFO("TEST", "Committing graph...");
graph.commit();
UHD_LOG_INFO("TEST", "Commit complete.");
// We need to set the interpation again, because the rates will screw it
// change it w.r.t. to the previous setting
test_duc->set_property<int>("interp", TEST_INTERP, 0);
BOOST_CHECK_EQUAL(test_duc->get_property<int>("interp", 0), TEST_INTERP);
BOOST_CHECK(mock_source_term.get_edge_property<double>(
"samp_rate", {res_source_info::OUTPUT_EDGE, 0})
* TEST_INTERP
== mock_sink_term.get_edge_property<double>(
"samp_rate", {res_source_info::INPUT_EDGE, 0}));
const double initial_input_scaling = mock_source_term.get_edge_property<double>(
"scaling", {res_source_info::OUTPUT_EDGE, 0});
const double initial_output_scaling = mock_sink_term.get_edge_property<double>(
"scaling", {res_source_info::INPUT_EDGE, 0});
// Our chosen interpolation value will cause some scaling issues, so
// this value needs to be off from 1.0
BOOST_CHECK(initial_input_scaling != 1.0);
BOOST_CHECK(initial_output_scaling == 1.0);
// The DUC will not let us set the scaling on its input, so the following
// call to set property should have no effect
mock_source_term.set_edge_property<double>(
"scaling", 42.0, {res_source_info::OUTPUT_EDGE, 0});
BOOST_CHECK(initial_input_scaling
== mock_source_term.get_edge_property<double>(
"scaling", {res_source_info::OUTPUT_EDGE, 0}));
BOOST_CHECK(initial_output_scaling
== mock_sink_term.get_edge_property<double>(
"scaling", {res_source_info::INPUT_EDGE, 0}));
// However, if we change the scaling on the DUC's output, that will
// propagate to its input
UHD_LOG_INFO("TEST", "Testing doubling the output scaling...");
mock_sink_term.set_edge_property<double>(
"scaling", 2.0, {res_source_info::INPUT_EDGE, 0});
const double doubled_input_scaling = mock_source_term.get_edge_property<double>(
"scaling", {res_source_info::OUTPUT_EDGE, 0});
BOOST_CHECK_EQUAL(doubled_input_scaling, 2 * initial_input_scaling);
UHD_LOG_INFO("TEST", "Setting freq to 1/8 of input rate");
constexpr double TEST_FREQ = 1.0 / 8;
test_duc->set_property<double>("freq", TEST_FREQ, 0);
const uint32_t freq_word_1 =
duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR);
BOOST_REQUIRE(freq_word_1 != 0);
UHD_LOG_INFO("TEST", "Doubling input rate (to 2.0)");
// Now this should change the freq word, but not the absolute frequency
mock_sink_term.set_edge_property<double>("samp_rate",
2
* mock_sink_term.get_edge_property<double>(
"samp_rate", {res_source_info::INPUT_EDGE, 0}),
{res_source_info::INPUT_EDGE, 0});
const double freq_word_2 =
duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR);
// The frequency word is the phase increment, which will halve. We skirt
// around fixpoint/floating point accuracy issues by using CLOSE.
BOOST_CHECK_CLOSE(double(freq_word_1) / double(freq_word_2), 2.0, 1e-6);
// Reset the interpolation
test_duc->set_property<int>("interp", TEST_INTERP, 0);
BOOST_REQUIRE_EQUAL(test_duc->get_property<int>("interp", 0), TEST_INTERP);
UHD_LOG_INFO("TEST", "DUC: Testing action forwarding");
auto new_stream_cmd_action =
stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
new_stream_cmd_action->stream_cmd.num_samps = 1000;
node_accessor.post_action(
&mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action);
BOOST_REQUIRE(!mock_source_term.received_actions.empty());
auto stream_cmd_recv_by_src = std::dynamic_pointer_cast<stream_cmd_action_info>(
mock_source_term.received_actions.back());
BOOST_CHECK(stream_cmd_recv_by_src);
BOOST_CHECK_EQUAL(stream_cmd_recv_by_src->stream_cmd.num_samps, 1000 / TEST_INTERP);
auto new_stream_cmd_action2 =
stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
node_accessor.post_action(
&mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action2);
BOOST_REQUIRE(!mock_source_term.received_actions.empty());
auto stream_cmd_recv_by_src2 = std::dynamic_pointer_cast<stream_cmd_action_info>(
mock_source_term.received_actions.back());
BOOST_CHECK_EQUAL(stream_cmd_recv_by_src2->stream_cmd.stream_mode,
uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
auto new_stream_cmd_action3 =
stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
new_stream_cmd_action3->stream_cmd.num_samps = 100;
node_accessor.post_action(
&mock_source_term, {res_source_info::OUTPUT_EDGE, 0}, new_stream_cmd_action3);
BOOST_REQUIRE(!mock_sink_term.received_actions.empty());
auto stream_cmd_recv_by_src3 = std::dynamic_pointer_cast<stream_cmd_action_info>(
mock_sink_term.received_actions.back());
BOOST_CHECK(stream_cmd_recv_by_src3);
BOOST_CHECK_EQUAL(stream_cmd_recv_by_src3->stream_cmd.num_samps, 100 * TEST_INTERP);
}
|