1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/cal/power_container.hpp>
#include <uhd/exception.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/test/unit_test.hpp>
#include <fstream>
#include <vector>
using namespace uhd;
using namespace uhd::cal;
static const double eps = 1e-8;
////////////////////////////////////////////////////////////////////////
BOOST_AUTO_TEST_CASE(test_power_container_bilinear)
{
////////////////////////////////////////////////////////////////////////
// Create the data container
power_container::sptr container = power_container::make();
// Create some data points to add
std::vector<double> pt0(2, 0.0);
std::vector<double> pt1(2, 0.0);
std::vector<double> pt2(2, 0.0);
std::vector<double> pt3(2, 2.0);
pt1[0] = 2.0;
pt2[1] = 2.0;
container->add(1.0, pt0);
container->add(1.0, pt1);
container->add(0.0, pt2);
container->add(0.0, pt3);
// Add points to interpolate against
std::vector<double> test0(2, 1.0);
std::vector<double> test1(2, 1.5);
std::vector<double> test2(2, 0.0);
test2[1] = 1.0;
BOOST_CHECK_CLOSE(container->get(test0), 0.50, eps);
BOOST_CHECK_CLOSE(container->get(test1), 0.25, eps);
BOOST_CHECK_CLOSE(container->get(test2), 0.50, eps);
}
////////////////////////////////////////////////////////////////////////
BOOST_AUTO_TEST_CASE(test_power_temp_container)
{
////////////////////////////////////////////////////////////////////////
// Create the data container
power_container::sptr container = power_container::make();
// Create some data points to add
std::vector<double> pt0(3, 1.0);
std::vector<double> pt1(3, 2.0);
std::vector<double> pt2(3, 3.0);
container->add(1.0, pt0);
container->add(2.0, pt1);
container->add(5.0, pt2);
// Add points to interpolate against
std::vector<double> test0(3, 1.99);
std::vector<double> test1(3, 1.29);
std::vector<double> test2;
test2.push_back(2.59);
test2.push_back(1.29);
test2.push_back(2.99);
BOOST_CHECK_CLOSE(container->get(test0), 2.0, eps);
BOOST_CHECK_CLOSE(container->get(test1), 1.0, eps);
BOOST_CHECK_CLOSE(container->get(test2), 5.0, eps);
}
////////////////////////////////////////////////////////////////////////
BOOST_AUTO_TEST_CASE(test_power_container_metadata)
{
////////////////////////////////////////////////////////////////////////
// Create the data container
power_container::sptr container = power_container::make();
// Create some metadata to add
base_container::metadata_t data;
std::string fake_serial = "F2A432";
data["x300"] = fake_serial;
// Add some metadata
container->add_metadata(data);
// Check to see if the metadata matches
power_container::metadata_t recovered_data = container->get_metadata();
BOOST_CHECK_EQUAL(recovered_data["x300"], fake_serial);
}
////////////////////////////////////////////////////////////////////////
BOOST_AUTO_TEST_CASE(test_power_serialization)
{
////////////////////////////////////////////////////////////////////////
// Create the data container
power_container::sptr container = power_container::make();
// Create some metadata to add
base_container::metadata_t data;
std::string fake_serial = "F2A432";
data["x300"] = fake_serial;
// Add some metadata
container->add_metadata(data);
// Create some data points to add
std::vector<double> pt0(3, 1.0);
std::vector<double> pt1(3, 2.0);
std::vector<double> pt2(3, 3.0);
container->add(1.0, pt0);
container->add(2.0, pt1);
container->add(5.0, pt2);
std::string filename("test_power_serialization");
// Create/open a file to store the container
{
std::ofstream ofile(filename.c_str());
boost::archive::text_oarchive oarchive(ofile);
oarchive << *container;
}
// Restore to another data container
power_container::sptr new_container = power_container::make();
{
std::ifstream ifile(filename.c_str());
boost::archive::text_iarchive iarchive(ifile);
iarchive >> *new_container;
}
// Add points to interpolate against
std::vector<double> test0(3, 1.99);
std::vector<double> test1(3, 1.29);
std::vector<double> test2;
test2.push_back(2.59);
test2.push_back(1.29);
test2.push_back(2.99);
power_container::metadata_t recovered_data = new_container->get_metadata();
BOOST_CHECK_CLOSE(new_container->get(test0), 2.0, eps);
BOOST_CHECK_CLOSE(new_container->get(test1), 1.0, eps);
BOOST_CHECK_CLOSE(new_container->get(test2), 5.0, eps);
// Check to see if the metadata matches
BOOST_CHECK_EQUAL(recovered_data["x300"], fake_serial);
std::remove(filename.c_str());
}
////////////////////////////////////////////////////////////////////////
BOOST_AUTO_TEST_CASE(test_interp_singular)
{
////////////////////////////////////////////////////////////////////////
// Create the data container
power_container::sptr container = power_container::make();
// Create some data points to add
// that result in a singular matrix
std::vector<double> pt0(2, 1.0);
std::vector<double> pt1(2, 2.0);
std::vector<double> pt2(2, 3.0);
std::vector<double> pt3(2, 4.0);
container->add(1.0, pt0);
container->add(2.0, pt1);
container->add(3.0, pt2);
container->add(4.0, pt3);
std::vector<double> test(2, 2.5);
BOOST_CHECK_CLOSE(container->get(test), 2.5, eps);
}
|