aboutsummaryrefslogtreecommitdiffstats
path: root/host/test/convert_test.cpp
blob: de0245c1df03450ac3601d8c1e66d10cacaa9a06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include <uhd/convert.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/foreach.hpp>
#include <boost/cstdint.hpp>
#include <complex>
#include <vector>
#include <cstdlib>
#include <iostream>

using namespace uhd;

//typedefs for complex types
typedef std::complex<boost::int16_t> sc16_t;
typedef std::complex<float> fc32_t;

#define MY_CHECK_CLOSE(a, b, f) if ((std::abs(a) > (f) and std::abs(b) > (f))) \
    BOOST_CHECK_CLOSE_FRACTION(a, b, f)

/***********************************************************************
 * Loopback runner:
 *    convert input buffer into intermediate buffer
 *    convert intermediate buffer into output buffer
 **********************************************************************/
template <typename Range> static void loopback(
    size_t nsamps,
    const io_type_t &io_type,
    const otw_type_t &otw_type,
    const Range &input,
    Range &output
){
    //item32 is largest device type
    std::vector<boost::uint32_t> interm(nsamps);

    convert::input_type input0(1, &input[0]), input1(1, &interm[0]);
    convert::output_type output0(1, &interm[0]), output1(1, &output[0]);

    //convert to intermediate type
    convert::io_type_to_otw_type(
        io_type, otw_type, input0, output0, nsamps
    );

    //convert back to host type
    convert::otw_type_to_io_type(
        io_type, otw_type, input1, output1, nsamps
    );
}

/***********************************************************************
 * Test short conversion
 **********************************************************************/
static void test_convert_types_sc16(
    size_t nsamps,
    const io_type_t &io_type,
    const otw_type_t &otw_type
){
    //fill the input samples
    std::vector<sc16_t> input(nsamps), output(nsamps);
    BOOST_FOREACH(sc16_t &in, input) in = sc16_t(
        std::rand()-(RAND_MAX/2),
        std::rand()-(RAND_MAX/2)
    );

    //run the loopback and test
    loopback(nsamps, io_type, otw_type, input, output);
    BOOST_CHECK_EQUAL_COLLECTIONS(input.begin(), input.end(), output.begin(), output.end());
}

BOOST_AUTO_TEST_CASE(test_convert_types_be_sc16){
    io_type_t io_type(io_type_t::COMPLEX_INT16);
    otw_type_t otw_type;
    otw_type.byteorder = otw_type_t::BO_BIG_ENDIAN;
    otw_type.width = 16;

    //try various lengths to test edge cases
    for (size_t nsamps = 1; nsamps < 16; nsamps++){
        test_convert_types_sc16(nsamps, io_type, otw_type);
    }
}

BOOST_AUTO_TEST_CASE(test_convert_types_le_sc16){
    io_type_t io_type(io_type_t::COMPLEX_INT16);
    otw_type_t otw_type;
    otw_type.byteorder = otw_type_t::BO_LITTLE_ENDIAN;
    otw_type.width = 16;

    //try various lengths to test edge cases
    for (size_t nsamps = 1; nsamps < 16; nsamps++){
        test_convert_types_sc16(nsamps, io_type, otw_type);
    }
}

/***********************************************************************
 * Test float conversion
 **********************************************************************/
static void test_convert_types_fc32(
    size_t nsamps,
    const io_type_t &io_type,
    const otw_type_t &otw_type
){
    //fill the input samples
    std::vector<fc32_t> input(nsamps), output(nsamps);
    BOOST_FOREACH(fc32_t &in, input) in = fc32_t(
        (std::rand()/float(RAND_MAX/2)) - 1,
        (std::rand()/float(RAND_MAX/2)) - 1
    );

    //run the loopback and test
    loopback(nsamps, io_type, otw_type, input, output);
    for (size_t i = 0; i < nsamps; i++){
        MY_CHECK_CLOSE(input[i].real(), output[i].real(), float(0.01));
        MY_CHECK_CLOSE(input[i].imag(), output[i].imag(), float(0.01));
    }
}

BOOST_AUTO_TEST_CASE(test_convert_types_be_fc32){
    io_type_t io_type(io_type_t::COMPLEX_FLOAT32);
    otw_type_t otw_type;
    otw_type.byteorder = otw_type_t::BO_BIG_ENDIAN;
    otw_type.width = 16;

    //try various lengths to test edge cases
    for (size_t nsamps = 1; nsamps < 16; nsamps++){
        test_convert_types_fc32(nsamps, io_type, otw_type);
    }
}

BOOST_AUTO_TEST_CASE(test_convert_types_le_fc32){
    io_type_t io_type(io_type_t::COMPLEX_FLOAT32);
    otw_type_t otw_type;
    otw_type.byteorder = otw_type_t::BO_LITTLE_ENDIAN;
    otw_type.width = 16;

    //try various lengths to test edge cases
    for (size_t nsamps = 1; nsamps < 16; nsamps++){
        test_convert_types_fc32(nsamps, io_type, otw_type);
    }
}

/***********************************************************************
 * Test float to short conversion loopback
 **********************************************************************/
BOOST_AUTO_TEST_CASE(test_convert_types_fc32_to_sc16){
    io_type_t io_type_in(io_type_t::COMPLEX_FLOAT32);
    io_type_t io_type_out(io_type_t::COMPLEX_INT16);

    otw_type_t otw_type;
    otw_type.byteorder = otw_type_t::BO_NATIVE;
    otw_type.width = 16;

    const size_t nsamps = 13;
    std::vector<fc32_t> input(nsamps);
    BOOST_FOREACH(fc32_t &in, input) in = fc32_t(
        (std::rand()/float(RAND_MAX/2)) - 1,
        (std::rand()/float(RAND_MAX/2)) - 1
    );
    std::vector<boost::uint32_t> interm(nsamps);
    std::vector<sc16_t> output(nsamps);

    convert::input_type input0(1, &input[0]), input1(1, &interm[0]);
    convert::output_type output0(1, &interm[0]), output1(1, &output[0]);

    //convert float to intermediate
    convert::io_type_to_otw_type(
        io_type_in, otw_type, input0, output0, nsamps
    );

    //convert intermediate to short
    convert::otw_type_to_io_type(
        io_type_out, otw_type, input1, output1, nsamps
    );

    //test that the inputs and outputs match
    for (size_t i = 0; i < nsamps; i++){
        MY_CHECK_CLOSE(input[i].real(), output[i].real()/float(32767), float(0.01));
        MY_CHECK_CLOSE(input[i].imag(), output[i].imag()/float(32767), float(0.01));
    }
}

/***********************************************************************
 * Test short to float conversion loopback
 **********************************************************************/
BOOST_AUTO_TEST_CASE(test_convert_types_sc16_to_fc32){
    io_type_t io_type_in(io_type_t::COMPLEX_INT16);
    io_type_t io_type_out(io_type_t::COMPLEX_FLOAT32);

    otw_type_t otw_type;
    otw_type.byteorder = otw_type_t::BO_NATIVE;
    otw_type.width = 16;

    const size_t nsamps = 13;
    std::vector<sc16_t> input(nsamps);
    BOOST_FOREACH(sc16_t &in, input) in = sc16_t(
        std::rand()-(RAND_MAX/2),
        std::rand()-(RAND_MAX/2)
    );
    std::vector<boost::uint32_t> interm(nsamps);
    std::vector<fc32_t> output(nsamps);

    convert::input_type input0(1, &input[0]), input1(1, &interm[0]);
    convert::output_type output0(1, &interm[0]), output1(1, &output[0]);

    //convert short to intermediate
    convert::io_type_to_otw_type(
        io_type_in, otw_type, input0, output0, nsamps
    );

    //convert intermediate to float
    convert::otw_type_to_io_type(
        io_type_out, otw_type, input1, output1, nsamps
    );

    //test that the inputs and outputs match
    for (size_t i = 0; i < nsamps; i++){
        MY_CHECK_CLOSE(input[i].real()/float(32767), output[i].real(), float(0.01));
        MY_CHECK_CLOSE(input[i].imag()/float(32767), output[i].imag(), float(0.01));
    }
}