1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
//
// Copyright 2010-2011,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/utils/gain_group.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/exception.hpp>
#include <boost/bind.hpp>
#include <algorithm>
#include <vector>
using namespace uhd;
static bool compare_by_step_size(
const size_t &rhs, const size_t &lhs, std::vector<gain_fcns_t> &fcns
){
return fcns.at(rhs).get_range().step() > fcns.at(lhs).get_range().step();
}
/*!
* Get a multiple of step with the following relation:
* result = step*floor(num/step)
*
* Due to small doubleing-point inaccuracies:
* num = n*step + e, where e is a small inaccuracy.
* When e is negative, floor would yield (n-1)*step,
* despite that n*step is really the desired result.
* This function is designed to mitigate that issue.
*
* \param num the number to approximate
* \param step the step size to round with
* \param e the small inaccuracy to account for
* \return a multiple of step approximating num
*/
template <typename T> static T floor_step(T num, T step, T e = T(0.001)){
if (num < T(0)) {
return step*int(num/step - e);
} else {
return step*int(num/step + e);
}
}
gain_group::~gain_group(void){
/* NOP */
}
/***********************************************************************
* gain group implementation
**********************************************************************/
class gain_group_impl : public gain_group{
public:
gain_group_impl(void){
/*NOP*/
}
gain_range_t get_range(const std::string &name){
if (not name.empty()) return _name_to_fcns.get(name).get_range();
double overall_min = 0, overall_max = 0, overall_step = 0;
for(const gain_fcns_t &fcns: get_all_fcns()){
const gain_range_t range = fcns.get_range();
overall_min += range.start();
overall_max += range.stop();
//the overall step is the min (zero is invalid, first run)
if (overall_step == 0) overall_step = range.step();
overall_step = std::min(overall_step, range.step());
}
return gain_range_t(overall_min, overall_max, overall_step);
}
double get_value(const std::string &name){
if (not name.empty()) return _name_to_fcns.get(name).get_value();
double overall_gain = 0;
for(const gain_fcns_t &fcns: get_all_fcns()){
overall_gain += fcns.get_value();
}
return overall_gain;
}
void set_value(double gain, const std::string &name){
if (not name.empty()) return _name_to_fcns.get(name).set_value(gain);
std::vector<gain_fcns_t> all_fcns = get_all_fcns();
if (all_fcns.size() == 0) return; //nothing to set!
//get the max step size among the gains
double max_step = 0;
for(const gain_fcns_t &fcns: all_fcns){
max_step = std::max(max_step, fcns.get_range().step());
}
//create gain bucket to distribute power
std::vector<double> gain_bucket;
//distribute power according to priority (round to max step)
double gain_left_to_distribute = gain;
for(const gain_fcns_t &fcns: all_fcns){
const gain_range_t range = fcns.get_range();
gain_bucket.push_back(floor_step(uhd::clip(
gain_left_to_distribute, range.start(), range.stop()
), max_step));
gain_left_to_distribute -= gain_bucket.back();
}
//get a list of indexes sorted by step size large to small
std::vector<size_t> indexes_step_size_dec;
for (size_t i = 0; i < all_fcns.size(); i++){
indexes_step_size_dec.push_back(i);
}
std::sort(
indexes_step_size_dec.begin(), indexes_step_size_dec.end(),
boost::bind(&compare_by_step_size, _1, _2, all_fcns)
);
UHD_ASSERT_THROW(
all_fcns.at(indexes_step_size_dec.front()).get_range().step() >=
all_fcns.at(indexes_step_size_dec.back()).get_range().step()
);
//distribute the remainder (less than max step)
//fill in the largest step sizes first that are less than the remainder
for(size_t i: indexes_step_size_dec){
const gain_range_t range = all_fcns.at(i).get_range();
double additional_gain = floor_step(uhd::clip(
gain_bucket.at(i) + gain_left_to_distribute, range.start(), range.stop()
), range.step()) - gain_bucket.at(i);
gain_bucket.at(i) += additional_gain;
gain_left_to_distribute -= additional_gain;
}
UHD_LOGGER_DEBUG("UHD") << "gain_left_to_distribute " << gain_left_to_distribute ;
//now write the bucket out to the individual gain values
for (size_t i = 0; i < gain_bucket.size(); i++){
UHD_LOGGER_DEBUG("UHD") << i << ": " << gain_bucket.at(i) ;
all_fcns.at(i).set_value(gain_bucket.at(i));
}
}
const std::vector<std::string> get_names(void){
return _name_to_fcns.keys();
}
void register_fcns(
const std::string &name,
const gain_fcns_t &gain_fcns,
size_t priority
){
if (name.empty() or _name_to_fcns.has_key(name)){
//ensure the name name is unique and non-empty
return register_fcns(name + "_", gain_fcns, priority);
}
_registry[priority].push_back(gain_fcns);
_name_to_fcns[name] = gain_fcns;
}
private:
//! get the gain function sets in order (highest priority first)
std::vector<gain_fcns_t> get_all_fcns(void){
std::vector<gain_fcns_t> all_fcns;
for(size_t key: uhd::sorted(_registry.keys())){
const std::vector<gain_fcns_t> &fcns = _registry[key];
all_fcns.insert(all_fcns.begin(), fcns.begin(), fcns.end());
}
return all_fcns;
}
uhd::dict<size_t, std::vector<gain_fcns_t> > _registry;
uhd::dict<std::string, gain_fcns_t> _name_to_fcns;
};
/***********************************************************************
* gain group factory function
**********************************************************************/
gain_group::sptr gain_group::make(void){
return sptr(new gain_group_impl());
}
|