1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "clock_ctrl.hpp"
#include "ad9510_regs.hpp"
#include "usrp2_regs.hpp" //spi slave constants
#include "usrp2_clk_regs.hpp"
#include <uhd/utils/assert_has.hpp>
#include <boost/cstdint.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
using namespace uhd;
static const bool enb_test_clk = false;
/*!
* A usrp2 clock control specific to the ad9510 ic.
*/
class usrp2_clock_ctrl_impl : public usrp2_clock_ctrl{
public:
usrp2_clock_ctrl_impl(usrp2_iface::sptr iface){
_iface = iface;
clk_regs = usrp2_clk_regs_t(_iface->get_rev());
_ad9510_regs.cp_current_setting = ad9510_regs_t::CP_CURRENT_SETTING_3_0MA;
this->write_reg(clk_regs.pll_3);
// Setup the clock registers to 100MHz:
// This was already done by the firmware (or the host couldnt communicate).
// We could remove this part, and just leave it to the firmware.
// But why not leave it in for those who want to mess with clock settings?
// 100mhz = 10mhz/R * (P*B + A)
_ad9510_regs.pll_power_down = ad9510_regs_t::PLL_POWER_DOWN_NORMAL;
_ad9510_regs.prescaler_value = ad9510_regs_t::PRESCALER_VALUE_DIV2;
this->write_reg(clk_regs.pll_4);
_ad9510_regs.acounter = 0;
this->write_reg(clk_regs.acounter);
_ad9510_regs.bcounter_msb = 0;
_ad9510_regs.bcounter_lsb = 5;
this->write_reg(clk_regs.bcounter_msb);
this->write_reg(clk_regs.bcounter_lsb);
_ad9510_regs.ref_counter_msb = 0;
_ad9510_regs.ref_counter_lsb = 1; // r divider = 1
this->write_reg(clk_regs.ref_counter_msb);
this->write_reg(clk_regs.ref_counter_lsb);
/* regs will be updated in commands below */
this->enable_external_ref(false);
this->enable_rx_dboard_clock(false);
this->enable_tx_dboard_clock(false);
this->enable_mimo_clock_out(false);
/* private clock enables, must be set here */
this->enable_dac_clock(true);
this->enable_adc_clock(true);
this->enable_test_clock(enb_test_clk);
}
~usrp2_clock_ctrl_impl(void){
//power down clock outputs
this->enable_external_ref(false);
this->enable_rx_dboard_clock(false);
this->enable_tx_dboard_clock(false);
this->enable_dac_clock(false);
this->enable_adc_clock(false);
this->enable_mimo_clock_out(false);
this->enable_test_clock(false);
}
void enable_mimo_clock_out(bool enb){
//calculate the low and high dividers
size_t divider = size_t(this->get_master_clock_rate()/10e6);
size_t high = divider/2;
size_t low = divider - high;
switch(clk_regs.exp){
case 2: //U2 rev 3
_ad9510_regs.power_down_lvpecl_out2 = enb?
ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_NORMAL :
ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out2 = ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT2_810MV;
//set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out2 = low - 1;
_ad9510_regs.divider_high_cycles_out2 = high - 1;
_ad9510_regs.bypass_divider_out2 = 0;
break;
case 5: //U2 rev 4
_ad9510_regs.power_down_lvds_cmos_out5 = enb? 0 : 1;
_ad9510_regs.lvds_cmos_select_out5 = ad9510_regs_t::LVDS_CMOS_SELECT_OUT5_LVDS;
_ad9510_regs.output_level_lvds_out5 = ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT5_1_75MA;
//set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out5 = low - 1;
_ad9510_regs.divider_high_cycles_out5 = high - 1;
_ad9510_regs.bypass_divider_out5 = 0;
break;
case 6: //U2+
_ad9510_regs.power_down_lvds_cmos_out6 = enb? 0 : 1;
_ad9510_regs.lvds_cmos_select_out6 = ad9510_regs_t::LVDS_CMOS_SELECT_OUT6_LVDS;
_ad9510_regs.output_level_lvds_out6 = ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT6_1_75MA;
//set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out6 = low - 1;
_ad9510_regs.divider_high_cycles_out6 = high - 1;
_ad9510_regs.bypass_divider_out5 = 0;
break;
default:
break;
}
this->write_reg(clk_regs.output(clk_regs.exp));
this->write_reg(clk_regs.div_lo(clk_regs.exp));
this->update_regs();
}
//uses output clock 7 (cmos)
void enable_rx_dboard_clock(bool enb){
_ad9510_regs.power_down_lvds_cmos_out7 = enb? 0 : 1;
_ad9510_regs.lvds_cmos_select_out7 = ad9510_regs_t::LVDS_CMOS_SELECT_OUT7_CMOS;
_ad9510_regs.output_level_lvds_out7 = ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT7_1_75MA;
this->write_reg(clk_regs.output(clk_regs.rx_db));
this->update_regs();
}
void set_rate_rx_dboard_clock(double rate){
assert_has(get_rates_rx_dboard_clock(), rate, "rx dboard clock rate");
size_t divider = size_t(get_master_clock_rate()/rate);
//bypass when the divider ratio is one
_ad9510_regs.bypass_divider_out7 = (divider == 1)? 1 : 0;
//calculate the low and high dividers
size_t high = divider/2;
size_t low = divider - high;
//set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out7 = low - 1;
_ad9510_regs.divider_high_cycles_out7 = high - 1;
//write the registers
this->write_reg(clk_regs.div_lo(clk_regs.rx_db));
this->write_reg(clk_regs.div_hi(clk_regs.rx_db));
this->update_regs();
}
std::vector<double> get_rates_rx_dboard_clock(void){
std::vector<double> rates;
for (size_t i = 1; i <= 16+16; i++) rates.push_back(get_master_clock_rate()/i);
return rates;
}
//uses output clock 6 (cmos) on USRP2 and output clock 5 (cmos) on USRP2+
void enable_tx_dboard_clock(bool enb){
switch(clk_regs.tx_db) {
case 5: //USRP2+
_ad9510_regs.power_down_lvds_cmos_out5 = enb? 0 : 1;
_ad9510_regs.lvds_cmos_select_out5 = ad9510_regs_t::LVDS_CMOS_SELECT_OUT5_CMOS;
_ad9510_regs.output_level_lvds_out5 = ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT5_1_75MA;
break;
case 6: //USRP2
_ad9510_regs.power_down_lvds_cmos_out6 = enb? 0 : 1;
_ad9510_regs.lvds_cmos_select_out6 = ad9510_regs_t::LVDS_CMOS_SELECT_OUT6_CMOS;
_ad9510_regs.output_level_lvds_out6 = ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT6_1_75MA;
break;
}
this->write_reg(clk_regs.output(clk_regs.tx_db));
this->update_regs();
}
void set_rate_tx_dboard_clock(double rate){
assert_has(get_rates_tx_dboard_clock(), rate, "tx dboard clock rate");
size_t divider = size_t(get_master_clock_rate()/rate);
//bypass when the divider ratio is one
_ad9510_regs.bypass_divider_out6 = (divider == 1)? 1 : 0;
//calculate the low and high dividers
size_t high = divider/2;
size_t low = divider - high;
switch(clk_regs.tx_db) {
case 5: //USRP2+
_ad9510_regs.bypass_divider_out5 = (divider == 1)? 1 : 0;
_ad9510_regs.divider_low_cycles_out5 = low - 1;
_ad9510_regs.divider_high_cycles_out5 = high - 1;
break;
case 6: //USRP2
//bypass when the divider ratio is one
_ad9510_regs.bypass_divider_out6 = (divider == 1)? 1 : 0;
//set the registers (divider - 1)
_ad9510_regs.divider_low_cycles_out6 = low - 1;
_ad9510_regs.divider_high_cycles_out6 = high - 1;
break;
}
//write the registers
this->write_reg(clk_regs.div_hi(clk_regs.tx_db));
this->write_reg(clk_regs.div_lo(clk_regs.tx_db));
this->update_regs();
}
std::vector<double> get_rates_tx_dboard_clock(void){
return get_rates_rx_dboard_clock(); //same master clock, same dividers...
}
void enable_test_clock(bool enb) {
_ad9510_regs.power_down_lvpecl_out0 = enb?
ad9510_regs_t::POWER_DOWN_LVPECL_OUT0_NORMAL :
ad9510_regs_t::POWER_DOWN_LVPECL_OUT0_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out0 = ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT0_810MV;
_ad9510_regs.divider_low_cycles_out0 = 0;
_ad9510_regs.divider_high_cycles_out0 = 0;
_ad9510_regs.bypass_divider_out0 = 1;
this->write_reg(0x3c);
this->write_reg(0x48);
this->write_reg(0x49);
}
/*!
* If we are to use an external reference, enable the charge pump.
* \param enb true to enable the CP
*/
void enable_external_ref(bool enb){
_ad9510_regs.charge_pump_mode = (enb)?
ad9510_regs_t::CHARGE_PUMP_MODE_NORMAL :
ad9510_regs_t::CHARGE_PUMP_MODE_3STATE ;
_ad9510_regs.pll_mux_control = ad9510_regs_t::PLL_MUX_CONTROL_DLD_HIGH;
_ad9510_regs.pfd_polarity = ad9510_regs_t::PFD_POLARITY_POS;
this->write_reg(clk_regs.pll_2);
this->update_regs();
}
double get_master_clock_rate(void){
return 100e6;
}
void set_mimo_clock_delay(double delay) {
//delay_val is a 5-bit value (0-31) for fine control
//the equations below determine delay for a given ramp current, # of caps and fine delay register
//delay range:
//range_ns = 200*((caps+3)/i_ramp_ua)*1.3286
//offset (zero delay):
//offset_ns = 0.34 + (1600 - i_ramp_ua)*1e-4 + ((caps-1)/ramp)*6
//delay_ns = offset_ns + range_ns * delay / 31
int delay_val = boost::math::iround(delay/9.744e-9*31);
if(delay_val == 0) {
switch(clk_regs.exp) {
case 5:
_ad9510_regs.delay_control_out5 = 1;
break;
case 6:
_ad9510_regs.delay_control_out6 = 1;
break;
default:
break; //delay not supported on U2 rev 3
}
} else {
switch(clk_regs.exp) {
case 5:
_ad9510_regs.delay_control_out5 = 0;
_ad9510_regs.ramp_current_out5 = ad9510_regs_t::RAMP_CURRENT_OUT5_200UA;
_ad9510_regs.ramp_capacitor_out5 = ad9510_regs_t::RAMP_CAPACITOR_OUT5_4CAPS;
_ad9510_regs.delay_fine_adjust_out5 = delay_val;
this->write_reg(0x34);
this->write_reg(0x35);
this->write_reg(0x36);
break;
case 6:
_ad9510_regs.delay_control_out6 = 0;
_ad9510_regs.ramp_current_out6 = ad9510_regs_t::RAMP_CURRENT_OUT6_200UA;
_ad9510_regs.ramp_capacitor_out6 = ad9510_regs_t::RAMP_CAPACITOR_OUT6_4CAPS;
_ad9510_regs.delay_fine_adjust_out6 = delay_val;
this->write_reg(0x38);
this->write_reg(0x39);
this->write_reg(0x3A);
break;
default:
break;
}
}
}
private:
/*!
* Write a single register to the spi regs.
* \param addr the address to write
*/
void write_reg(boost::uint8_t addr){
boost::uint32_t data = _ad9510_regs.get_write_reg(addr);
_iface->transact_spi(SPI_SS_AD9510, spi_config_t::EDGE_RISE, data, 24, false /*no rb*/);
}
/*!
* Tells the ad9510 to latch the settings into the operational registers.
*/
void update_regs(void){
_ad9510_regs.update_registers = 1;
this->write_reg(clk_regs.update);
}
//uses output clock 3 (pecl)
//this is the same between USRP2 and USRP2+ and doesn't get a switch statement
void enable_dac_clock(bool enb){
_ad9510_regs.power_down_lvpecl_out3 = (enb)?
ad9510_regs_t::POWER_DOWN_LVPECL_OUT3_NORMAL :
ad9510_regs_t::POWER_DOWN_LVPECL_OUT3_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out3 = ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT3_810MV;
_ad9510_regs.bypass_divider_out3 = 1;
this->write_reg(clk_regs.output(clk_regs.dac));
this->write_reg(clk_regs.div_hi(clk_regs.dac));
this->update_regs();
}
//uses output clock 4 (lvds) on USRP2 and output clock 2 (lvpecl) on USRP2+
void enable_adc_clock(bool enb){
switch(clk_regs.adc) {
case 2:
_ad9510_regs.power_down_lvpecl_out2 = enb? ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_NORMAL : ad9510_regs_t::POWER_DOWN_LVPECL_OUT2_SAFE_PD;
_ad9510_regs.output_level_lvpecl_out2 = ad9510_regs_t::OUTPUT_LEVEL_LVPECL_OUT2_500MV;
_ad9510_regs.bypass_divider_out2 = 1;
break;
case 4:
_ad9510_regs.power_down_lvds_cmos_out4 = enb? 0 : 1;
_ad9510_regs.lvds_cmos_select_out4 = ad9510_regs_t::LVDS_CMOS_SELECT_OUT4_LVDS;
_ad9510_regs.output_level_lvds_out4 = ad9510_regs_t::OUTPUT_LEVEL_LVDS_OUT4_1_75MA;
_ad9510_regs.bypass_divider_out4 = 1;
break;
}
this->write_reg(clk_regs.output(clk_regs.adc));
this->write_reg(clk_regs.div_hi(clk_regs.adc));
this->update_regs();
}
usrp2_iface::sptr _iface;
usrp2_clk_regs_t clk_regs;
ad9510_regs_t _ad9510_regs;
};
/***********************************************************************
* Public make function for the ad9510 clock control
**********************************************************************/
usrp2_clock_ctrl::sptr usrp2_clock_ctrl::make(usrp2_iface::sptr iface){
return sptr(new usrp2_clock_ctrl_impl(iface));
}
|