aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/common/lmx2592.cpp
blob: 4a6cef887d20041d48cac776e41c7b49cc4d60f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
//
// Copyright 2018, 2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "lmx2592_regs.hpp"
#include <uhdlib/usrp/common/lmx2592.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/math/common_factor_rt.hpp>
#include <chrono>
#include <cmath>
#include <iomanip>
#include <iostream>

using namespace uhd;

namespace {
constexpr double LMX2592_DOUBLER_MAX_REF_FREQ = 60e6;
constexpr double LMX2592_MAX_FREQ_PFD = 125e6;

constexpr double LMX2592_MIN_REF_FREQ = 5e6;
constexpr double LMX2592_MAX_REF_FREQ = 1400e6;

constexpr double LMX2592_MAX_OUT_FREQ = 9.8e9;
constexpr double LMX2592_MIN_OUT_FREQ = 20e6;

constexpr double LMX2592_MIN_VCO_FREQ = 3.55e9;
constexpr double LMX2592_MAX_VCO_FREQ = 7.1e9;

constexpr double LMX2592_MAX_DOUBLER_INPUT_FREQ = 200e6;
constexpr double LMX2592_MAX_MULT_OUT_FREQ = 250e6;
constexpr double LMX2592_MAX_MULT_INPUT_FREQ = 70e6;
constexpr double LMX2592_MAX_POSTR_DIV_OUT_FREQ = 125e6;

constexpr int MAX_N_DIVIDER = 4095;

constexpr int MAX_MASH_ORDER = 4;
constexpr std::array<int, MAX_MASH_ORDER + 1> LMX2592_MIN_N_DIV = {
    9, 11, 16, 18, 30
}; // includes int-N

constexpr int NUM_DIVIDERS = 14;
constexpr std::array<int, NUM_DIVIDERS> LMX2592_CHDIV_DIVIDERS = { 1,  2,  3,  4,  6,  8,   12,
                                                                   16, 24, 32, 64, 96, 128, 192 };
const std::array<double, NUM_DIVIDERS> LMX2592_CHDIV_MIN_FREQ = {
    3550e6,   1775e6,   1183.33e6, 887.5e6, 591.67e6, 443.75e6, 295.83e6,
    221.88e6, 147.92e6, 110.94e6,  55.47e6, 36.98e6,  27.73e6,  20e6
};
constexpr std::array<double, NUM_DIVIDERS> LMX2592_CHDIV_MAX_FREQ = {
    6000e6,   3550.0e6, 2366.67e6, 1775.00e6, 1183.33, 887.50e6, 591.67e6,
    443.75e6, 295.83e6, 221.88e6,  110.94e6,  73.96e6, 55.47e6,  36.98
};
constexpr int NUM_CHDIV_STAGES = 3;
constexpr std::array<std::array<int, NUM_CHDIV_STAGES>, NUM_DIVIDERS> LMX2592_CHDIV_SEGS = {
    { { 1, 1, 1 },
      { 2, 1, 1 },
      { 3, 1, 1 },
      { 2, 2, 1 },
      { 3, 2, 1 },
      { 2, 4, 1 },
      { 2, 6, 1 },
      { 2, 8, 1 },
      { 3, 8, 1 },
      { 2, 8, 2 },
      { 2, 8, 4 },
      { 2, 8, 6 },
      { 2, 8, 8 },
      { 3, 8, 8 } }
};

constexpr int SPI_ADDR_SHIFT = 16;
constexpr int SPI_ADDR_MASK = 0x7f;
constexpr int SPI_READ_FLAG = 1 << 23;
}

class lmx2592_impl : public lmx2592_iface {
public:
    explicit lmx2592_impl(write_spi_t write_fn, read_spi_t read_fn)
        : _write_fn([write_fn](const uint8_t addr, const uint16_t data) {
              const uint32_t spi_transaction =
                  0 | ((addr & SPI_ADDR_MASK) << SPI_ADDR_SHIFT) | data;
              write_fn(spi_transaction);
          }),
          _read_fn([read_fn](const uint8_t addr) {
              const uint32_t spi_transaction =
                  SPI_READ_FLAG | ((addr & SPI_ADDR_MASK) << SPI_ADDR_SHIFT);
              return read_fn(spi_transaction);
          }),
          _regs(),
          _rewrite_regs(true) {
        UHD_LOG_TRACE("LMX2592", "Initializing Synthesizer");

        // Soft Reset
        _regs.reset = 1;
        UHD_LOG_TRACE("LMX2592", "Resetting LMX");
        _write_fn(_regs.ADDR_R0, _regs.get_reg(_regs.ADDR_R0));

        // The bit is cleared on the synth during the reset
        _regs.reset = 0;

        // Enable SPI Readback
        _regs.muxout_sel = lmx2592_regs_t::muxout_sel_t::MUXOUT_SEL_READBACK;
        UHD_LOG_TRACE("LMX2592", "Enabling SPI Readback");
        _write_fn(_regs.ADDR_R0, _regs.get_reg(_regs.ADDR_R0));

        // Test Write/Read
        const auto random_number = // Derived from current time
            static_cast<uint16_t>(
                std::chrono::system_clock::to_time_t(std::chrono::system_clock::now()) & 0x0FFF);
        _write_fn(_regs.ADDR_R40, random_number);
        const auto readback = _read_fn(_regs.ADDR_R40);
        if (readback == random_number) {
            UHD_LOG_TRACE("LMX2592", "Register loopback test passed");
        } else {
            throw runtime_error(
                str(boost::format(
                        "LMX2592 register loopback test failed. Expected 0x%04X, Read 0x%04X") %
                    random_number % readback));
        }

        // Set register values where driver defaults differ from the datasheet values
        _regs.acal_enable = 0;
        _regs.fcal_enable = 0;
        _regs.cal_clk_div = 0;
        _regs.vco_idac_ovr = 1;
        _regs.cp_idn = 12;
        _regs.cp_iup = 12;
        _regs.vco_idac = 350;
        _regs.mash_ditherer = 1;
        _regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_VCO;
        _regs.fcal_fast = 1;

        // Write default register values, ensures register copy is synchronized
        _rewrite_regs = true;
        commit();

        _regs.fcal_enable = 1;
        commit();
    }

    ~lmx2592_impl() override { UHD_SAFE_CALL(_regs.powerdown = 1; commit();) }

    double set_frequency(const double target_freq) override {

        // Enforce LMX frequency limits
        if (target_freq < LMX2592_MIN_OUT_FREQ or target_freq > LMX2592_MAX_OUT_FREQ) {
            throw runtime_error("Requested frequency is out of the supported range");
        }

        // Find the largest possible divider
        auto output_divider_index = 0;
        for (auto limit : LMX2592_CHDIV_MIN_FREQ) {
            // The second harmonic level is very bad when using the div-by-3
            // Skip and let the div-by-4 cover the range
            if (LMX2592_CHDIV_DIVIDERS[output_divider_index] == 3) {
                output_divider_index++;
                continue;
            }
            if (target_freq < limit) {
                output_divider_index++;
            } else {
                break;
            }
        }
        const auto output_divider = LMX2592_CHDIV_DIVIDERS[output_divider_index];
        _set_chdiv_values(output_divider_index);

        // Setup input signal path and PLL loop
        const int vco_multiplier = target_freq > LMX2592_MAX_VCO_FREQ ? 2 : 1;

        const auto target_vco_freq = target_freq * output_divider;
        const auto core_vco_freq = target_vco_freq / vco_multiplier;

        double input_freq = _ref_freq;

        // Input Doubler stage
        if (input_freq <= LMX2592_MAX_DOUBLER_INPUT_FREQ) {
            _regs.osc_doubler = 1;
            input_freq *= 2;
        } else {
            _regs.osc_doubler = 0;
        }

        // Pre-R divider
        _regs.pll_r_pre =
            narrow_cast<uint16_t>(std::ceil(input_freq / LMX2592_MAX_MULT_INPUT_FREQ));
        input_freq /= _regs.pll_r_pre;

        // Multiplier
        _regs.mult = narrow_cast<uint8_t>(std::floor(LMX2592_MAX_MULT_OUT_FREQ / input_freq));
        input_freq *= _regs.mult;

        // Post R divider
        _regs.pll_r = narrow_cast<uint8_t>(std::ceil(input_freq / LMX2592_MAX_POSTR_DIV_OUT_FREQ));

        // Default to divide by 2, will be increased later if N exceeds it's limit
        int prescaler = 2;
        _regs.pll_n_pre = lmx2592_regs_t::pll_n_pre_t::PLL_N_PRE_DIVIDE_BY_2;

        const int min_n_divider = LMX2592_MIN_N_DIV[_regs.mash_order];
        double pfd_freq = input_freq / _regs.pll_r;
        while (pfd_freq * (prescaler + min_n_divider) / vco_multiplier > core_vco_freq) {
            _regs.pll_r++;
            pfd_freq = input_freq / _regs.pll_r;
        }

        const auto spur_dodging_enable = false;
        const double min_vco_step_size = spur_dodging_enable ? 2e6 : 1;

        auto fden = static_cast<uint32_t>(std::floor(pfd_freq * prescaler / min_vco_step_size));
        _regs.pll_den_lsb = narrow_cast<uint16_t>(fden);
        _regs.pll_den_msb = narrow_cast<uint16_t>(fden >> 16);

        auto mash_seed = static_cast<uint32_t>(fden / 2);
        _regs.mash_seed_lsb = narrow_cast<uint16_t>(mash_seed);
        _regs.mash_seed_msb = narrow_cast<uint16_t>(mash_seed >> 16);

        // Calculate N and Fnum
        const auto N_dot_F = target_vco_freq / (pfd_freq * prescaler);
        auto N = static_cast<uint16_t>(std::floor(N_dot_F));
        if (N > MAX_N_DIVIDER) {
            _regs.pll_n_pre = lmx2592_regs_t::pll_n_pre_t::PLL_N_PRE_DIVIDE_BY_4;
            N /= 2;
        }
        const auto frac = N_dot_F - N;
        const auto fnum = static_cast<uint32_t>(std::round(frac * fden));

        _regs.pll_n = N;
        _regs.pll_num_lsb = narrow_cast<uint16_t>(fnum);
        _regs.pll_num_msb = narrow_cast<uint16_t>(fnum >> 16);

        // Calculate actual Fcore_vco, Fvco, F_lo frequencies
        const auto actual_fvco = pfd_freq * prescaler * (N + double(fnum) / double(fden));
        const auto actual_fcore_vco = actual_fvco / vco_multiplier;
        const auto actual_f_lo = actual_fcore_vco * vco_multiplier / output_divider;

        UHD_LOGGER_TRACE("LMX2592") << "Tuned to " << actual_f_lo;
        commit();

        // Run Frequency Calibration
        _regs.fcal_enable = 1;
        commit();

        UHD_LOGGER_TRACE("LMX2592")
            << "PLL lock status: " << (get_lock_status() ? "Locked" : "Unlocked");

        return actual_f_lo;
    }

    void set_mash_order(const mash_order_t mash_order) override {
        if (mash_order == mash_order_t::INT_N) {
            _regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_INT_MODE;

        } else if (mash_order == mash_order_t::FIRST) {
            _regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_FIRST;

        } else if (mash_order == mash_order_t::SECOND) {
            _regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_SECOND;

        } else if (mash_order == mash_order_t::THIRD) {
            _regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_THIRD;

        } else if (mash_order == mash_order_t::FOURTH) {
            _regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_FOURTH;
        }
    }

    void set_reference_frequency(const double ref_freq) override {
        if (ref_freq < LMX2592_MIN_REF_FREQ or ref_freq > LMX2592_MAX_REF_FREQ) {
            throw std::runtime_error("Reference frequency is out of bounds for the LMX2592");
        }

        _ref_freq = ref_freq;
    }

    void set_output_power(const output_t output, const unsigned int power) override {
        UHD_LOGGER_TRACE("LMX2592")
            << "Set output: " << (output == RF_OUTPUT_A ? "A" : "B") << " to power " << power;

        const auto MAX_POWER = 63;
        if (power > MAX_POWER) {
            UHD_LOGGER_ERROR("LMX2592")
                << "Requested power level of " << power << " exceeds maximum of " << MAX_POWER;
            return;
        }

        if (output == RF_OUTPUT_A) {
            _regs.outa_power = power;
        } else {
            _regs.outb_power = power;
        }

        commit();
    }

    void set_output_enable(const output_t output, const bool enable) override {
        UHD_LOGGER_TRACE("LMX2592") << "Set output " << (output == RF_OUTPUT_A ? "A" : "B")
                                    << " to " << (enable ? "On" : "Off");

        if (enable) {
            _regs.chdiv_dist_pd = 0;

            if (output == RF_OUTPUT_A) {
                _regs.outa_pd = 0;

            } else {
                _regs.outb_pd = 0;
            }

        } else {
            if (output == RF_OUTPUT_A) {
                _regs.outa_pd = 1;
                _regs.vco_dista_pd = 1;
                _regs.chdiv_dista_en = 0;

            } else {
                _regs.outb_pd = 1;
                _regs.vco_distb_pd = 1;
                _regs.chdiv_distb_en = 0;
            }
        }

        // If both channels are disabled
        if (_regs.outa_pd == 1 and _regs.outb_pd == 1) {
            _regs.chdiv_dist_pd = 1;
        }

        commit();
    }

    bool get_lock_status() override {
        // MUXOUT is shared between Lock Detect and SPI Readback
        _regs.muxout_sel = lmx2592_regs_t::muxout_sel_t::MUXOUT_SEL_LOCK_DETECT;
        commit();

        // The SPI MISO is now being driven by lock detect
        // If the PLL is locked we expect to read 0xFFFF from any read, else 0x0000
        const auto value_read = _read_fn(_regs.ADDR_R0);
        const auto lock_status = (value_read == 0xFFFF);

        UHD_LOG_TRACE(
            "LMX2592",
            str(boost::format("Read Lock status: 0x%04X") % static_cast<unsigned int>(value_read)));

        // Restore ability to read registers
        _regs.muxout_sel = lmx2592_regs_t::muxout_sel_t::MUXOUT_SEL_READBACK;
        commit();

        return lock_status;
    }

    void commit() override {
        UHD_LOGGER_DEBUG("LMX2592")
            << "Storing register cache " << (_rewrite_regs ? "completely" : "selectively")
            << " to LMX via SPI...";
        const auto changed_addrs =
            _rewrite_regs ? _regs.get_all_addrs() : _regs.get_changed_addrs<size_t>();

        for (const auto addr : changed_addrs) {
            _write_fn(addr, _regs.get_reg(addr));
            UHD_LOGGER_TRACE("LMX2592")
                << "Register " << std::setw(2) << static_cast<unsigned int>(addr) << ": 0x"
                << std::hex << std::uppercase << std::setw(4) << std::setfill('0')
                << static_cast<unsigned int>(_regs.get_reg(addr));
        }

        _regs.save_state();
        UHD_LOG_DEBUG("LMX2592",
                      "Writing registers complete: "
                      "Updated "
                          << changed_addrs.size()
                          << " registers.");

        _rewrite_regs = false;
    }

private: // Members
    //! Write functor: Take address / data pair, craft SPI transaction
    using write_fn_t = std::function<void(uint8_t, uint16_t)>;
    //! Read functor: Return value given address
    using read_fn_t = std::function<uint16_t(uint8_t)>;

    write_fn_t _write_fn;
    read_fn_t _read_fn;
    lmx2592_regs_t _regs;
    bool _rewrite_regs;
    double _ref_freq;

    void _set_chdiv_values(const int output_divider_index) {

        // Configure divide segments and mux
        const auto seg1 = LMX2592_CHDIV_SEGS[output_divider_index][0];
        const auto seg2 = LMX2592_CHDIV_SEGS[output_divider_index][1];
        const auto seg3 = LMX2592_CHDIV_SEGS[output_divider_index][2];

        _regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_POWERDOWN;

        if (seg1 > 1) {
            _regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1;
            _regs.chdiv_seg1_en = 1;
            _regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_DIVIDER;
            _regs.outb_mux = lmx2592_regs_t::outb_mux_t::OUTB_MUX_DIVIDER;
            _regs.vco_dista_pd = 1;
            _regs.vco_distb_pd = 1;
            _regs.chdiv_dist_pd = 0;

            if (_regs.outa_pd == 0) {
                _regs.chdiv_dista_en = 1;
            }
            if (_regs.outb_pd == 0) {
                _regs.chdiv_distb_en = 1;
            }

        } else {
            _regs.chdiv_seg1_en = 0;
            _regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_VCO;
            _regs.outb_mux = lmx2592_regs_t::outb_mux_t::OUTB_MUX_VCO;
            _regs.chdiv_dist_pd = 1;

            if (_regs.outa_pd == 0) {
                _regs.vco_dista_pd = 0;
            }
            if (_regs.outb_pd == 0) {
                _regs.vco_distb_pd = 0;
            }
        }

        if (seg1 == 2) {
            _regs.chdiv_seg1 = lmx2592_regs_t::chdiv_seg1_t::CHDIV_SEG1_DIVIDE_BY_2;
        } else if (seg1 == 3) {
            _regs.chdiv_seg1 = lmx2592_regs_t::chdiv_seg1_t::CHDIV_SEG1_DIVIDE_BY_3;
        }

        if (seg2 > 1) {
            _regs.chdiv_seg2_en = 1;
            _regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1_AND_2;
        } else {
            _regs.chdiv_seg2_en = 0;
        }

        if (seg2 == 1) {
            _regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_POWERDOWN;
        } else if (seg2 == 2) {
            _regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_2;
        } else if (seg2 == 4) {
            _regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_4;
        } else if (seg2 == 6) {
            _regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_6;
        } else if (seg2 == 8) {
            _regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_8;
        }

        if (seg3 > 1) {
            _regs.chdiv_seg3_en = 1;
            _regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1_2_AND_3;
        } else {
            _regs.chdiv_seg3_en = 0;
        }

        if (seg3 == 1) {
            _regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_POWERDOWN;
        } else if (seg3 == 2) {
            _regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_2;
        } else if (seg3 == 4) {
            _regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_4;
        } else if (seg3 == 6) {
            _regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_6;
        } else if (seg3 == 8) {
            _regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_8;
        }
    }
};

lmx2592_impl::sptr lmx2592_iface::make(write_spi_t write, read_spi_t read) {
    return std::make_shared<lmx2592_impl>(write, read);
}