1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
//
// Copyright 2020 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "lmx2572_regs.hpp"
#include <uhd/exception.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhdlib/usrp/common/lmx2572.hpp>
#include <uhdlib/utils/interpolation.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <cmath>
#include <limits>
#include <map>
namespace {
// LOG ID
constexpr char LOG_ID[] = "LMX2572";
// Highest LO / output frequency
constexpr double MAX_OUT_FREQ = 6.4e9; // Hz
// Lowest LO / output frequency
constexpr double MIN_OUT_FREQ = 12.5e6; // Hz
// Target loop bandwidth
constexpr double TARGET_LOOP_BANDWIDTH = 75e3; // Hz
// Loop Filter gain setting resistor
constexpr double LOOP_GAIN_SETTING_RESISTANCE = 150; // ohm
// Delay after powerup. TI recommends a 10 ms delay after clearing powerdown
// (not documented in the datasheet).
const uhd::time_spec_t POWERUP_DELAY = uhd::time_spec_t(10e-3);
// Conservative estimate for PLL to lock which includes VCO calibration and PLL settling
constexpr double PLL_LOCK_TIME = 200e-6; // s
// Valid input/reference frequencies (fOSC)
//
// NOTE: These frequencies are valid for X400/ZBX. If we need to use this
// driver elsewhere, this part needs to be refactored.
const std::set<double> VALID_FOSC{61.44e6, 64e6, 62.5e6, 50e6};
}; // namespace
//! Control interface for an LMX2572 synthesizer
class lmx2572_impl : public lmx2572_iface
{
public:
enum class muxout_state_t { LOCKDETECT, SDO };
explicit lmx2572_impl(
write_fn_t&& poke_fn, read_fn_t&& peek_fn, sleep_fn_t&& sleep_fn)
: _poke16(std::move(poke_fn))
, _peek16(std::move(peek_fn))
, _sleep(std::move(sleep_fn))
, _regs()
{
_regs.save_state();
}
void commit() override
{
UHD_LOG_TRACE(LOG_ID, "Storing register cache to LMX2572...");
const auto changed_addrs = _regs.get_changed_addrs<uint8_t>();
for (const auto addr : changed_addrs) {
// We write R0 last, for double-buffering
if (addr == 0) {
continue;
}
_poke16(addr, _regs.get_reg(addr));
}
_poke16(0, _regs.get_reg(0));
_regs.save_state();
UHD_LOG_TRACE(LOG_ID,
"Storing cache complete: Updated " << changed_addrs.size() << " registers.");
}
bool get_enabled() override
{
// Chip is either in normal operation mode or power down mode
return _regs.powerdown == lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION;
}
void set_enabled(const bool enabled) override
{
const bool prev_enabled = get_enabled();
_regs.powerdown = enabled
? lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION
: lmx2572_regs_t::powerdown_t::POWERDOWN_POWER_DOWN;
_poke16(0, _regs.get_reg(0));
if (enabled && !prev_enabled) {
_sleep(POWERUP_DELAY);
}
}
void reset() override
{
// Power-on Programming Sequence described in the datasheet,
// Section 7.5.1.1
_regs = lmx2572_regs_t{};
_regs.reset = lmx2572_regs_t::reset_t::RESET_RESET;
_poke16(0, _regs.get_reg(0));
// Reset bit is self-clearing, it does not need to be poked twice. We
// manually reset it in the SW cache so we don't accidentally reset again
_regs.reset = lmx2572_regs_t::reset_t::RESET_NORMAL_OPERATION;
// Also enable register readback so we can read back the magic number
// register
_enable_register_readback(true);
// If the LO was previously powered down, the reset above will power it up. On
// power-up, we need to wait for the power up delay recommended by TI.
_sleep(POWERUP_DELAY);
// Check we can read back the last register, which always returns a
// magic constant:
const auto magic125 = _peek16(125);
if (magic125 != 0x2288) {
UHD_LOG_ERROR(LOG_ID,
"Unable to communicate with LMX2572! Expected R125==0x2288, got: "
<< std::hex << magic125 << std::dec);
throw uhd::runtime_error("Unable to communicate to LMX2572!");
}
UHD_LOG_TRACE(LOG_ID, "Communication with LMX2572 successful.");
// Now set _regs into a sensible state
_set_defaults();
// Now write the regs in reverse order, skipping RO regs
const auto ro_regs = _regs.get_ro_regs();
// Write R0 last for the double buffering
for (int addr = _regs.get_num_regs() - 2; addr >= 0; addr--) {
if (ro_regs.count(addr)) {
continue;
}
_poke16(uhd::narrow_cast<uint8_t>(addr), _regs.get_reg(addr));
}
_regs.save_state();
}
bool get_lock_status() override
{
// Disable register readback which implicitly enables lock detect mode
_enable_register_readback(false);
// If the PLL is locked we expect to read 0xFFFF from any read
return _peek16(0) == 0xFFFF;
}
uint16_t peek16(const uint8_t addr)
{
_enable_register_readback(true);
return _peek16(addr);
}
void set_sync_mode(const bool enable) override
{
_sync_mode = enable;
}
//! Returns the enabled/disabled state of the phase synchronization
bool get_sync_mode() override
{
return _sync_mode;
}
void set_output_enable_all(const bool enable) override
{
set_output_enable(RF_OUTPUT_A, enable);
set_output_enable(RF_OUTPUT_B, enable);
}
void set_output_enable(const output_t output, const bool enable) override
{
if (output == RF_OUTPUT_A) {
_regs.outa_pd = enable ? lmx2572_regs_t::outa_pd_t::OUTA_PD_NORMAL_OPERATION
: lmx2572_regs_t::outa_pd_t::OUTA_PD_POWER_DOWN;
return;
}
if (output == RF_OUTPUT_B) {
_regs.outb_pd = enable ? lmx2572_regs_t::outb_pd_t::OUTB_PD_NORMAL_OPERATION
: lmx2572_regs_t::outb_pd_t::OUTB_PD_POWER_DOWN;
return;
}
UHD_THROW_INVALID_CODE_PATH();
}
void set_output_power(const output_t output, const uint8_t power) override
{
if (output == RF_OUTPUT_A) {
_regs.outa_pwr = power;
return;
}
if (output == RF_OUTPUT_B) {
_regs.outb_pwr = power;
return;
}
UHD_THROW_INVALID_CODE_PATH();
}
void set_mux_input(const output_t output, const mux_in_t input) override
{
switch (output) {
case RF_OUTPUT_A: {
switch (input) {
case mux_in_t::DIVIDER:
_regs.outa_mux =
lmx2572_regs_t::outa_mux_t::OUTA_MUX_CHANNEL_DIVIDER;
return;
case mux_in_t::VCO:
_regs.outa_mux = lmx2572_regs_t::outa_mux_t::OUTA_MUX_VCO;
return;
case mux_in_t::HIGH_IMPEDANCE:
_regs.outa_mux =
lmx2572_regs_t::outa_mux_t::OUTA_MUX_HIGH_IMPEDANCE;
return;
default:
break;
}
break;
}
case RF_OUTPUT_B: {
switch (input) {
case mux_in_t::DIVIDER:
_regs.outb_mux =
lmx2572_regs_t::outb_mux_t::OUTB_MUX_CHANNEL_DIVIDER;
return;
case mux_in_t::VCO:
_regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_VCO;
return;
case mux_in_t::HIGH_IMPEDANCE:
_regs.outb_mux =
lmx2572_regs_t::outb_mux_t::OUTB_MUX_HIGH_IMPEDANCE;
return;
case mux_in_t::SYSREF:
_regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_SYSREF;
return;
default:
break;
}
break;
}
default:
break;
}
UHD_THROW_INVALID_CODE_PATH();
}
double set_frequency(const double target_freq,
const double fOSC,
const bool spur_dodging) override
{
// Sanity check
if (target_freq > MAX_OUT_FREQ || target_freq < MIN_OUT_FREQ) {
UHD_LOG_ERROR(LOG_ID,
"Invalid LMX2572 target frequency! Must be in ["
<< (MIN_OUT_FREQ / 1e6) << " MHz, " << (MAX_OUT_FREQ / 1e6)
<< " MHz]!");
throw uhd::value_error("Invalid LMX2572 target frequency!");
}
UHD_ASSERT_THROW(VALID_FOSC.count(fOSC));
// Create an integer version of fOSC for some of the following
// calculations
const uint64_t fOSC_int = static_cast<uint64_t>(fOSC);
// 1. Set up output/channel divider value and the output mux
const uint16_t out_D = _set_output_divider(target_freq);
const double fVCO = target_freq * out_D;
UHD_ASSERT_THROW(3200e6 <= fVCO && fVCO <= 6400e6);
// 2. Configure the reference dividers/multipliers
_set_pll_div_and_mult(target_freq, fVCO, fOSC_int);
// Calculate phase detector frequency
// See datasheet (Section 7.3.2):
// Equation (1): fPD = fOSC × OSC_2X × MULT / (PLL_R_PRE × PLL_R)
const double fPD =
fOSC * (_regs.osc_2x + 1) * _regs.mult / (_regs.pll_r_pre * _regs.pll_r);
// pre-3. Identify SYNC category.
// Based on the category, we need to set VCO_PHASE_SYNC_EN appropriately
// and update our p-multiplier.
// Note: In the line below, we use target_freq and not actual_freq. That
// is OK, because we know that _get_sync_cat() only does a check to see
// if target_freq is an integer multiple of fOSC. If that's the case,
// then rounding/coercion errors won't happen between target_freq and
// actual_freq because we can always exactly produce frequencies that
// are integer multiples of fOSC. This way, we don't have a circular
// dependency (because actual_freq depends on p indirectly).
const int p =
_set_phase_sync(_get_sync_cat(_regs.mult, fOSC, target_freq, out_D));
// P is introduced in Section 7.3.12 - calculate P with adaptation of
// Equation (3). It also comes up again in 8.1.6, although it's not
// called P there any more. There, it is the factor between N' and N.
// P == 2 whenever we're in a sync category where we need to program the
// N-divider with half the "normal" values. In TICS PRO, this value is
// described as "Calculated Included Channel Divide".
// 3. Calculate N, PLL_NUM and PLL_DEN
const double delta_fVCO = spur_dodging ? 2e6 : 1.0;
// In the next statement, we:
// - Estimate PLL_DEN by PLL_DEN = ceil(fPD * p / delta_fVCO)
// - This value can exceed the limits of uint32_t, so we clamp it between
// 1 and 0xFFFFFFFF (the denominator can also not be zero, so we need
// to catch rounding errors)
// - Finally, convert to uint32_t
const uint32_t PLL_DEN = static_cast<uint32_t>(std::max(1.0,
std::min(std::ceil(fPD * p / delta_fVCO),
double(std::numeric_limits<uint32_t>::max()))));
UHD_ASSERT_THROW(PLL_DEN > 0);
// This is where we do the N=N'/2 division from Section 8.1.6:
const double N_real = fVCO / (fPD * p);
const uint32_t N = static_cast<uint32_t>(std::floor(N_real));
const uint32_t PLL_NUM = std::round((N_real - double(N)) * PLL_DEN);
// See datasheet (Section 7.3.4):
// Equation (2): fVCO = fPD * [PLL_N + (PLL_NUM / PLL_DEN)] * p
// Note that p here is the "extra divider in SYNC mode" that is in the
// text, but not listed in Eq. (2) in this section.
const double fVCO_actual = fPD * p * (N + (static_cast<double>(PLL_NUM) / PLL_DEN));
UHD_ASSERT_THROW(3200e6 <= fVCO_actual && fVCO_actual <= 6400e6);
const double actual_freq = fVCO_actual / out_D;
// clang-format off
UHD_LOG_TRACE(LOG_ID,
"Calculating settings for fTARGET=" << (target_freq / 1e6)
<< " MHz, fOSC=" << (fOSC / 1e6)
<< " MHz: Target fVCO=" << (fVCO / 1e6)
<< " MHz, actual fVCO=" << (fVCO_actual / 1e6)
<< " MHz. R_pre=" << _regs.pll_r_pre
<< " OSC2X=" << _regs.osc_2x
<< " MULT=" << std::to_string(_regs.mult)
<< " PLL_R=" << std::to_string(_regs.pll_r)
<< " P=" << p
<< " N=" << N
<< " PLL_DEN=" << PLL_DEN
<< " PLL_NUM=" << PLL_NUM
<< " CHDIV=" << out_D);
// clang-format on
// 4. Set frequency dependent registers
_compute_and_set_mult_hi(fOSC);
_set_pll_n(N); // Note: N-divider values already account for
_set_pll_num(PLL_NUM); // N-divider adaptations at this point. No more
_set_pll_den(PLL_DEN); // divide-by-2 necessary.
_set_fcal_hpfd_adj(fPD);
_set_fcal_lpfd_adj(fPD);
_set_pfd_dly(fVCO_actual);
_set_mash_seed(spur_dodging, PLL_NUM, fPD);
if (get_sync_mode()) {
// From R69 register field description (Table 77):
// The delay should be at least 4 times the PLL lock time. The
// delay is expressed in state machine clock periods where
// state_machine_clock_period = 2^(CAL_CLK_DIV) / fOSC and
// CAL_CLK_DIV is one of {0, 1}
const double period = ((_regs.cal_clk_div == 0) ? 1 : 2) / fOSC;
const uint32_t mash_rst_count =
static_cast<uint32_t>(std::ceil(4 * PLL_LOCK_TIME / period));
_set_mash_rst_count(mash_rst_count);
}
// 5. Calculate charge pump gain
_compute_and_set_charge_pump_gain(fVCO_actual, N_real);
// 6. Calculate VCO calibration values
_compute_and_set_vco_cal(fVCO_actual);
// 7. Set amplitude on enabled outputs
if (_get_output_enabled(RF_OUTPUT_A)) {
_find_and_set_lo_power(actual_freq, RF_OUTPUT_A);
}
if (_get_output_enabled(RF_OUTPUT_B)) {
_find_and_set_lo_power(actual_freq, RF_OUTPUT_B);
}
return actual_freq;
}
private:
/**************************************************************************
* Attributes
*************************************************************************/
write_fn_t _poke16;
read_fn_t _peek16;
sleep_fn_t _sleep;
lmx2572_regs_t _regs = lmx2572_regs_t();
bool _sync_mode = false;
/**************************************************************************
* Private Methods
*************************************************************************/
//! Identify sync category according to Section 8.1.6 of the datasheet. This
// function implements the flowchart (Fig. 170).
sync_cat _get_sync_cat(
const uint8_t M, const double fOSC, const double fOUT, const uint16_t CHDIV)
{
if (!get_sync_mode()) {
return NONE;
}
// Right-hand path of the flowchart:
if (M > 1) {
if (CHDIV > 2) {
return CAT4;
}
if (std::fmod(fOUT, fOSC * M) != 0) {
return CAT4;
}
// In the flow chart, there's a third condition (PLL_NUM == 0) but
// that is implied in the previous condition. Here's the proof:
// 1) Because of the previous condition, we know that
// f_OUT = f_OSC * M * K, where K is an integer.
// We also know that that the doubler is disabled, so we can
// ignore it here.
// 2) PLL_NUM must be zero when f_VCO / f_PD is an integer value:
//
// f_VCO
// N = -----
// f_PD
//
// 3) We can insert
// f_VCO = f_OUT * D
// and
// f_PD = f_OSC * M / R where R is an integer (R-divider)
// which yields:
//
// f_OUT * D * R
// N = -------------
// f_OSC * M
//
// 4) Now we can insert 1), which yields
//
// N = K * D * R
//
// D is either 1 or 2, and K and R are integers. Therefore, N
// is an integer too, and PLL_NUM == 0. _
// |_|
//
// Note: We could simply calculate N here, but that would require
// knowing K and R, which we can avoid with this simple comment.
}
// Left-hand path of the flowchart:
if (M == 1 && std::fmod(fOUT, fOSC) != 0) {
return CAT3;
}
if (M == 1 && CHDIV > 2) {
return CAT2;
}
if (CHDIV == 2) {
return CAT1B;
}
return CAT1A;
}
//! Enable/disable register readback mode enabled
// SPI MISO is multiplexed to lock detect and register readback. Reading
// any register when the mux is set to lock detect will return just the
// lock detect signal, so ensure we're in readback mode if reads desired
void _enable_register_readback(const bool enable)
{
auto desired_state = enable
? lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_REGISTER_READBACK
: lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_LOCK_DETECT;
if (_regs.muxout_ld_sel != desired_state) {
_regs.muxout_ld_sel = desired_state;
_poke16(0, _regs.get_reg(0));
}
}
//! Sets the output divider registers
//
// Configures both the output divider and the output mux. If the divider is
// used, the mux input is set to CHDIV, otherwise, it's set to VCO.
uint16_t _set_output_divider(const double freq)
{
// clang-format off
// Map the desired output / LO frequency to output divider settings
const std::map<
double,
std::tuple<uint16_t, lmx2572_regs_t::chdiv_t>
> out_div_map {
// freq outD chdiv
{25e6, {256, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_256}},
{50e6, {128, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_128}},
{100e6, {64, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_64 }},
{200e6, {32, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_32 }},
{400e6, {16, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_16 }},
{800e6, {8, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_8 }},
{1.6e9, {4, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_4 }},
{3.2e9, {2, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2 }},
// CHDIV isn't used for out_divider == 1 so use DIVIDE_BY_2
// We use +1 as an epsilon value here. Upon entering this function
// we already know that that freq <= 6.4e9. We increase the
// boundary here so that upper_bound() will not fail on the
// corner case freq == 6.4e9.
{6.4e9+1, {1, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2 }}
};
// clang-format on
uint16_t out_D;
lmx2572_regs_t::chdiv_t chdiv;
auto out_div_it = out_div_map.upper_bound(freq);
UHD_ASSERT_THROW(out_div_it != out_div_map.end());
std::tie(out_D, chdiv) = out_div_it->second;
_regs.chdiv = lmx2572_regs_t::chdiv_t(chdiv);
// If we're using the output divider, map it to the corresponding output
// mux. Otherwise, connect the VCO directly to the mux.
const mux_in_t input = (out_D > 1) ? mux_in_t::DIVIDER : mux_in_t::VCO;
if (_get_output_enabled(RF_OUTPUT_A)) {
set_mux_input(RF_OUTPUT_A, input);
}
if (_get_output_enabled(RF_OUTPUT_B)) {
set_mux_input(RF_OUTPUT_B, input);
}
return out_D;
}
//! Returns the output enabled status of output
bool _get_output_enabled(const output_t output)
{
if (output == RF_OUTPUT_A) {
return _regs.outa_pd == lmx2572_regs_t::outa_pd_t::OUTA_PD_NORMAL_OPERATION;
} else {
return _regs.outb_pd == lmx2572_regs_t::outb_pd_t::OUTB_PD_NORMAL_OPERATION;
}
}
//! Sets the MASH_RST_COUNT registers
void _set_mash_rst_count(const uint32_t mash_rst_count)
{
_regs.mash_rst_count_upper = uhd::narrow_cast<uint16_t>(mash_rst_count >> 16);
_regs.mash_rst_count_lower = uhd::narrow_cast<uint16_t>(mash_rst_count);
}
//! Calculate and set the mult_hi register
//
// Sets the MULT_HI bit (needs to be high if the multiplier output frequency
// is larger than 100 MHz).
//
// \param ref_frequency The OSCin signal's frequency.
void _compute_and_set_mult_hi(const double fOSC)
{
const double fMULTout =
(fOSC * (int(_regs.osc_2x) + 1) * _regs.mult) / _regs.pll_r_pre;
_regs.mult_hi = (_regs.mult > 1 && fMULTout > 100e6)
? lmx2572_regs_t::mult_hi_t::MULT_HI_GREATER_THAN_100M
: lmx2572_regs_t::mult_hi_t::MULT_HI_LESS_THAN_EQUAL_TO_100M;
}
//! Sets the mash seed value based on fPD and whether spur dodging is enabled
void _set_mash_seed(const bool spur_dodging, const uint32_t PLL_NUM, const double pfd)
{
uint32_t mash_seed = 0;
if (spur_dodging || PLL_NUM == 0) {
// Leave mash_seed set to 0
}
else {
const std::map<double, uint32_t> seed_map = {
{25e6, 4999},
{30.72e6, 5531},
{31.25e6, 5591},
{32e6, 5657},
{50e6, 7096},
{61.44e6, 7841},
{62.5e6, 7907},
{64e6, 7993}
};
mash_seed = seed_map.lower_bound(pfd)->second;
}
_regs.mash_seed_upper = uhd::narrow_cast<uint16_t>(mash_seed >> 16);
_regs.mash_seed_lower = uhd::narrow_cast<uint16_t>(mash_seed);
}
void _find_and_set_lo_power(const double freq, const output_t output)
{
if (freq < 3e9) {
set_output_power(output, 25);
} else if (3e9 <= freq && freq < 4e9) {
constexpr double slope = 5.0;
constexpr double segment_range = 1e9;
constexpr int power_base = 25;
const double offset = freq - 3e9;
const uint8_t power =
std::round<uint8_t>(power_base + ((offset / segment_range) * slope));
set_output_power(output, power);
} else if (4e9 <= freq && freq < 5e9) {
constexpr double slope = 10.0;
constexpr double segment_range = 1e9;
constexpr int power_base = 30;
const double offset = freq - 4e9;
const uint8_t power =
std::round<uint8_t>(power_base + ((offset / segment_range) * slope));
set_output_power(output, power);
} else if (5e9 <= freq && freq < 6.4e9) {
constexpr double slope = 5 / 1.4;
constexpr double segment_range = 1.4e9;
constexpr int power_base = 40;
const double offset = freq - 5e9;
const uint8_t power =
std::round<uint8_t>(power_base + ((offset / segment_range) * slope));
set_output_power(output, power);
} else if (freq >= 6.4e9) {
set_output_power(output, 45);
} else {
UHD_THROW_INVALID_CODE_PATH();
}
}
//! Sets the FCAL_HPFD_ADJ value based on fPD
void _set_fcal_hpfd_adj(const double pfd)
{
// These frequency constants are from the data sheet (Section 7.6.1)
if (pfd <= 37.5e6) {
_regs.fcal_hpfd_adj = 0x0;
} else if (37.5e6 < pfd && pfd <= 75e6) {
_regs.fcal_hpfd_adj = 0x1;
} else if (75e6 < pfd && pfd <= 100e6) {
_regs.fcal_hpfd_adj = 0x2;
} else { // 100 MHz > pfd
_regs.fcal_hpfd_adj = 0x3;
}
}
//! Sets the FCAL_LPFD_ADJ value based on the fPD (Section 7.6.1)
void _set_fcal_lpfd_adj(const double pfd)
{
// These frequency constants are from the data sheet (Section 7.6.1)
if (pfd >= 10e6) {
_regs.fcal_lpfd_adj = 0x0;
} else if (10e6 > pfd && pfd >= 5e6) {
_regs.fcal_lpfd_adj = 0x1;
} else if (5e6 > pfd && pfd >= 2.5e6) {
_regs.fcal_lpfd_adj = 0x2;
} else { // pfd > 2.5MHz
_regs.fcal_lpfd_adj = 0x3;
}
}
//! Sets the PFD Delay value based on fVCO (Section 7.3.4)
void _set_pfd_dly(const double fVCO)
{
UHD_ASSERT_THROW(_regs.mash_order == lmx2572_regs_t::MASH_ORDER_THIRD_ORDER);
// Thse constants / values come from the data sheet (Table 3)
if (3.2e9 <= fVCO && fVCO < 4e9) {
_regs.pfd_dly_sel = 2;
} else if (4e9 <= fVCO && fVCO < 4.9e9) {
_regs.pfd_dly_sel = 2;
} else if (4.9e9 <= fVCO && fVCO <= 6.4e9) {
_regs.pfd_dly_sel = 3;
} else {
UHD_THROW_INVALID_CODE_PATH();
}
}
//! Sets the PLL divider and multiplier values
void _set_pll_div_and_mult(
const double fTARGET, const double fVCO, const uint64_t fOSC_int)
{
// We want to avoid SYNC category 4 (device unreliable in SYNC mode) so
// fix the pre-divider and multiplier to 1
// See datasheet (Section 8.1.6)
_regs.pll_r_pre = 1;
_regs.mult = 1;
// Doubler fixed to disabled
_regs.osc_2x = lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED;
// Post-divider
uint8_t pll_r = 0;
// NOTE: This calculation is designed for the ZBX daughterboard. Should
// we want to reuse this driver elsewhere, we need to factor this out
// and make it a bit nicer.
if (get_sync_mode()) {
if (fTARGET < 3200e6) {
switch (fOSC_int) {
case 61440000: {
if (3200e6 <= fVCO && fVCO < 3950e6) {
pll_r = 2;
} else if (3950e6 <= fVCO && fVCO <= 6400e6) {
pll_r = 1;
}
break;
}
case 64000000: {
if (3200e6 <= fVCO && fVCO < 4100e6) {
pll_r = 2;
} else if (4150e6 < fVCO && fVCO <= 6400e6) {
pll_r = 1;
}
break;
}
case 62500000: {
if (3200e6 <= fVCO && fVCO < 4000e6) {
pll_r = 2;
} else if (4050e6 <= fVCO && fVCO <= 6400e6) {
pll_r = 1;
}
break;
}
case 50000000: {
pll_r = 1;
break;
}
default:
UHD_THROW_INVALID_CODE_PATH();
} // end switch
} // end if (fTARGET < 3200e6)
else {
pll_r = 1;
}
} else {
pll_r = 1;
}
UHD_ASSERT_THROW(pll_r > 0);
_regs.pll_r = pll_r;
// Section 7.3.2 states to not use both the double and the multiplier
// (M), so let's check we're doing that
UHD_ASSERT_THROW(
_regs.mult == 1 || _regs.osc_2x == lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED);
}
//! Set the value of VCO_PHASE_SYNC_EN according to our sync category
//
// Assumption: outa_mux and outb_mux have already been appropriately
// programmed for this use case.
//
// Also calculates the P-value (see set_frequency() for more discussion on
// that value).
int _set_phase_sync(const sync_cat cat)
{
int P = 1;
// We always set the default value for VCO_PHASE_SYNC_EN here. Some
// sync categories do not, in fact, require this bit to be asserted.
// By resetting it here, we can exactly follow the datasheet in the
// following switch statement.
_regs.vco_phase_sync_en =
lmx2572_regs_t::vco_phase_sync_en_t::VCO_PHASE_SYNC_EN_NORMAL_OPERATION;
// This switch statement implements Table 137 from Section 8.1.6 of the
// datasheet.
switch (cat) {
case CAT1A:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 1A");
// Nothing required in this mode, input and output are always
// at a deterministic phase relationship.
break;
case CAT1B:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 1B");
// Set VCO_PHASE_SYNC_EN = 1
_regs.vco_phase_sync_en = lmx2572_regs_t::vco_phase_sync_en_t::
VCO_PHASE_SYNC_EN_PHASE_SYNC_MODE;
P = 2;
break;
case CAT2:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 2");
// Note: We assume the existence and usage of the SYNC pin here.
// This means there are no more steps required (Steps 3-6 are
// skipped).
break;
case CAT3:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 3");
// In this category, we assume that the SYNC signal will be
// applied afterwards, and that timing requirements are met.
if (_regs.outa_mux == lmx2572_regs_t::outa_mux_t::OUTA_MUX_CHANNEL_DIVIDER
|| _regs.outb_mux
== lmx2572_regs_t::outb_mux_t::OUTB_MUX_CHANNEL_DIVIDER) {
P = 2;
}
_regs.vco_phase_sync_en = lmx2572_regs_t::vco_phase_sync_en_t::
VCO_PHASE_SYNC_EN_PHASE_SYNC_MODE;
break;
case CAT4:
UHD_LOG_TRACE(LOG_ID, "Sync Category: 4");
UHD_LOG_WARNING(LOG_ID,
"PLL programming does not allow reliable phase synchronization!");
break;
case NONE:
// No phase sync, we're done
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
return P;
}
//! Compute and set charge pump gain register
// TODO: Charge pump settings will eventually come from a
// lookup table in the Cal EEPROM for Charge Pump setting vs. F_CORE VCO_.
void _compute_and_set_charge_pump_gain(const double fVCO_actual, const double N_real)
{
// clang-format off
// Table 135 (VCO Gain)
const std::map<
double,
std::tuple<double, double, uint8_t, uint8_t, uint8_t>
> vco_gain_map {
// fmax fmin fmax vco kmin kmax
{3.65e9, {3.2e9, 3.65e9, 1, 32, 47}},
{4.2e9, {3.65e9, 4.2e9, 2, 35, 54}},
{4.65e9, {4.2e9, 4.65e9, 3, 47, 64}},
{5.2e9, {4.65e9, 5.2e9, 4, 50, 73}},
{5.75e9, {5.2e9, 5.75e9, 5, 61, 82}},
{6.4e9, {5.75e9, 6.4e9, 6, 57, 79}}
};
// clang-format on
double fmin, fmax;
int VCO_CORE;
int KvcoMin, KvcoMax;
auto vco_gain_it = vco_gain_map.lower_bound(fVCO_actual);
UHD_ASSERT_THROW(vco_gain_it != vco_gain_map.end());
std::tie(fmin, fmax, VCO_CORE, KvcoMin, KvcoMax) = vco_gain_it->second;
double Kvco = uhd::math::linear_interp<double>(fVCO_actual, fmin, KvcoMin, fmax, KvcoMax);
// Calculate the optimal charge pump current (uA)
const double icp = 2 * uhd::math::PI * TARGET_LOOP_BANDWIDTH * N_real / (Kvco * LOOP_GAIN_SETTING_RESISTANCE);
// clang-format off
// Table 2 (Charge Pump Gain)
const std::map<double, uint8_t> cpg_map = {
// gain cpg
{ 0, 0},
{ 625, 1},
{1250, 2},
{1875, 3},
{2500, 4},
{3125, 5},
{3750, 6},
{4375, 7},
{5000, 12},
{5625, 13},
{6250, 14},
{6875, 15}
};
// clang-format on
const uint8_t cpg = uhd::math::at_nearest(cpg_map, icp);
_regs.cpg = cpg;
}
//! Compute and set VCO calibration values
// This method implements VCO partial assist calibration
// See datasheet (Section 8.1.4.1)
void _compute_and_set_vco_cal(const double fVCO_actual)
{
// clang-format off
// Table 136
const std::map<
double,
std::tuple<double, double, uint8_t, uint8_t, uint8_t, uint16_t, uint16_t>
> vco_partial_assist_map{
// fmax fmin fmax vco Cmin Cmax Amin Amax
{3.65e9, {3.2e9, 3.65e9, 1, 131, 19, 138, 137}},
{4.2e9, {3.65e9, 4.2e9, 2, 143, 25, 162, 142}},
{4.65e9, {4.2e9, 4.65e9, 3, 135, 34, 126, 114}},
{5.2e9, {4.65e9, 5.2e9, 4, 136, 25, 195, 172}},
{5.75e9, {5.2e9, 5.75e9, 5, 133, 20, 190, 163}},
{6.4e9, {5.75e9, 6.4e9, 6, 151, 27, 256, 204}}
};
// clang-format on
double fmin, fmax;
uint8_t VCO_CORE, Cmin, Cmax;
uint16_t Amin, Amax;
auto vco_cal_it = vco_partial_assist_map.lower_bound(fVCO_actual);
UHD_ASSERT_THROW(vco_cal_it != vco_partial_assist_map.end());
std::tie(fmin, fmax, VCO_CORE, Cmin, Cmax, Amin, Amax) = vco_cal_it->second;
uint16_t VCO_CAPCTRL_STRT =
std::round(Cmin - (fVCO_actual - fmin) * (Cmin - Cmax) / (fmax - fmin));
// From R78 register field description (Table 86)
const uint16_t VCO_CAPCTRL_STRT_MAX = 183;
VCO_CAPCTRL_STRT = std::min(VCO_CAPCTRL_STRT_MAX, VCO_CAPCTRL_STRT);
uint16_t VCO_DACISET_STRT =
std::round(Amin - ((fVCO_actual - fmin) * (Amin - Amax) / (fmax - fmin)));
// From R17 register field description (Table 25), 9-bit register
const uint16_t VCO_DACISET_STRT_MAX = 511; // 0x1FF
VCO_DACISET_STRT = std::min(VCO_DACISET_STRT, VCO_DACISET_STRT_MAX);
_regs.vco_sel = VCO_CORE;
_regs.vco_capctrl_strt = VCO_CAPCTRL_STRT;
_regs.vco_daciset_strt = VCO_DACISET_STRT;
}
void _set_pll_n(const uint32_t n)
{
UHD_ASSERT_THROW((n & 0x7FFFF) == n);
// The regs object masks internally, this 0x7 is just for the sake of
// reading
_regs.pll_n_upper_3_bits = uhd::narrow_cast<uint16_t>((n >> 16) & 0x7);
_regs.pll_n_lower_16_bits = uhd::narrow_cast<uint16_t>(n);
}
void _set_pll_num(const uint32_t num)
{
_regs.pll_num_upper = uhd::narrow_cast<uint16_t>(num >> 16);
_regs.pll_num_lower = uhd::narrow_cast<uint16_t>(num);
}
void _set_pll_den(const uint32_t den)
{
_regs.pll_den_upper = uhd::narrow_cast<uint16_t>(den >> 16);
_regs.pll_den_lower = uhd::narrow_cast<uint16_t>(den);
}
// NOTE: Some of these defaults are just sensible defaults, and get
// overwritten as soon as anything interesting happens. Other defaults are
// specific to X400/ZBX. If we want to use this driver for other dboards,
// we should add APIs to set those other things in order not to have a
// leaky abstraction (we'd like to contain lmx2572_regs_t within this file).
void _set_defaults()
{
_regs.ramp_en = lmx2572_regs_t::ramp_en_t::RAMP_EN_NORMAL_OPERATION;
_regs.vco_phase_sync_en =
lmx2572_regs_t::vco_phase_sync_en_t::VCO_PHASE_SYNC_EN_NORMAL_OPERATION;
_regs.add_hold = 0;
_regs.out_mute = lmx2572_regs_t::out_mute_t::OUT_MUTE_MUTED;
_regs.fcal_hpfd_adj = 1;
_regs.fcal_lpfd_adj = 0;
_regs.fcal_en = lmx2572_regs_t::fcal_en_t::FCAL_EN_ENABLE;
_regs.muxout_ld_sel = lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_LOCK_DETECT;
_regs.reset = lmx2572_regs_t::reset_t::RESET_NORMAL_OPERATION;
_regs.powerdown = lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION;
_regs.cal_clk_div = 0;
_regs.ipbuf_type = lmx2572_regs_t::ipbuf_type_t::IPBUF_TYPE_DIFFERENTIAL;
_regs.ipbuf_term = lmx2572_regs_t::ipbuf_term_t::IPBUF_TERM_INTERNALLY_TERMINATED;
_regs.out_force = lmx2572_regs_t::out_force_t::OUT_FORCE_USE_OUT_MUTE;
// set_frequency() implements VCO Partial assist so set the correct modes of
// operation and some defaults (defaults will get overwritten)
// See datasheet (Section 8.1.4)
_regs.vco_daciset_force =
lmx2572_regs_t::vco_daciset_force_t::VCO_DACISET_FORCE_NORMAL_OPERATION;
_regs.vco_capctrl_force =
lmx2572_regs_t::vco_capctrl_force_t::VCO_CAPCTRL_FORCE_NORMAL_OPERATION;
_regs.vco_sel_force = lmx2572_regs_t::vco_sel_force_t::VCO_SEL_FORCE_DISABLED;
_regs.vco_daciset_strt = 0x096;
_regs.vco_sel = 0x6;
_regs.vco_capctrl_strt = 0;
_regs.mult_hi = lmx2572_regs_t::mult_hi_t::MULT_HI_LESS_THAN_EQUAL_TO_100M;
_regs.osc_2x = lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED;
_regs.mult = 1;
_regs.pll_r = 1;
_regs.pll_r_pre = 1;
_regs.cpg = 7;
_regs.pll_n_upper_3_bits = 0;
_regs.pll_n_lower_16_bits = 0x28;
_regs.mash_seed_en = lmx2572_regs_t::mash_seed_en_t::MASH_SEED_EN_ENABLED;
_regs.pfd_dly_sel = 0x2;
_regs.pll_den_upper = 0;
_regs.pll_den_lower = 0;
_regs.mash_seed_upper = 0;
_regs.mash_seed_lower = 0;
_regs.pll_num_upper = 0;
_regs.pll_num_lower = 0;
_regs.outa_pwr = 0;
_regs.outb_pd = lmx2572_regs_t::outb_pd_t::OUTB_PD_POWER_DOWN;
_regs.outa_pd = lmx2572_regs_t::outa_pd_t::OUTA_PD_POWER_DOWN;
_regs.mash_reset_n =
lmx2572_regs_t::mash_reset_n_t::MASH_RESET_N_NORMAL_OPERATION;
_regs.mash_order = lmx2572_regs_t::mash_order_t::MASH_ORDER_THIRD_ORDER;
_regs.outa_mux = lmx2572_regs_t::outa_mux_t::OUTA_MUX_VCO;
_regs.outb_pwr = 0;
_regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_VCO;
_regs.inpin_ignore = 0;
_regs.inpin_hyst = lmx2572_regs_t::inpin_hyst_t::INPIN_HYST_DISABLED;
_regs.inpin_lvl = lmx2572_regs_t::inpin_lvl_t::INPIN_LVL_INVALID;
_regs.inpin_fmt =
lmx2572_regs_t::inpin_fmt_t::INPIN_FMT_SYNC_EQUALS_SYSREFREQ_EQUALS_CMOS2;
_regs.ld_type = lmx2572_regs_t::ld_type_t::LD_TYPE_VTUNE_AND_VCOCAL;
_regs.ld_dly = 100;
// See Table 144 (LDO_DLY Setting)
_regs.ldo_dly = 3;
_regs.dblbuf_en_0 = lmx2572_regs_t::dblbuf_en_0_t::DBLBUF_EN_0_ENABLED;
_regs.dblbuf_en_1 = lmx2572_regs_t::dblbuf_en_1_t::DBLBUF_EN_1_ENABLED;
_regs.dblbuf_en_2 = lmx2572_regs_t::dblbuf_en_2_t::DBLBUF_EN_2_ENABLED;
_regs.dblbuf_en_3 = lmx2572_regs_t::dblbuf_en_3_t::DBLBUF_EN_3_ENABLED;
_regs.dblbuf_en_4 = lmx2572_regs_t::dblbuf_en_4_t::DBLBUF_EN_4_ENABLED;
_regs.dblbuf_en_5 = lmx2572_regs_t::dblbuf_en_5_t::DBLBUF_EN_5_ENABLED;
_regs.mash_rst_count_upper = 0;
_regs.mash_rst_count_lower = 0;
// Always gets set by set_frequency()
_regs.chdiv = lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2;
_regs.ramp_thresh_33rd = 0;
_regs.quick_recal_en = 0;
_regs.ramp_thresh_upper = 0;
_regs.ramp_thresh_lower = 0;
_regs.ramp_limit_high_33rd = 0;
_regs.ramp_limit_high_upper = 0;
_regs.ramp_limit_high_lower = 0;
_regs.ramp_limit_low_33rd = 0;
_regs.ramp_limit_low_upper = 0;
_regs.ramp_limit_low_lower = 0;
// Per the datasheet, the following fields need to be programmed to specific
// constants which differ from the defaults after a reset occurs
_regs.reg29_reserved0 = 0;
_regs.reg30_reserved0 = 0x18A6;
_regs.reg52_reserved0 = 0x421;
_regs.reg57_reserved0 = 0x20;
_regs.reg78_reserved0 = 1;
}
};
lmx2572_iface::sptr lmx2572_iface::make(lmx2572_iface::write_fn_t&& poke_fn,
lmx2572_iface::read_fn_t&& peek_fn,
lmx2572_iface::sleep_fn_t&& sleep_fn)
{
return std::make_shared<lmx2572_impl>(
std::move(poke_fn), std::move(peek_fn), std::move(sleep_fn));
}
|