1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
//
// Copyright 2013-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "adf5355.hpp"
#include "adf5355_regs.hpp"
#include <uhd/utils/math.hpp>
#include <boost/math/common_factor_rt.hpp> //gcd
#include <boost/thread.hpp>
using namespace uhd;
template<typename data_t>
data_t clamp(data_t val, data_t min, data_t max) {
return (val < min) ? min : ((val > max) ? max : val);
}
template<typename data_t>
double todbl(data_t val) {
return static_cast<double>(val);
}
static const double ADF5355_DOUBLER_MAX_REF_FREQ = 60e6;
static const double ADF5355_MAX_FREQ_PFD = 125e6;
static const double ADF5355_PRESCALER_THRESH = 7e9;
static const double ADF5355_MIN_VCO_FREQ = 3.4e9;
static const double ADF5355_MAX_VCO_FREQ = 6.8e9;
static const double ADF5355_MAX_OUT_FREQ = 6.8e9;
static const double ADF5355_MIN_OUT_FREQ = (3.4e9 / 64);
static const double ADF5355_MAX_OUTB_FREQ = (6.8e9 * 2);
static const double ADF5355_MIN_OUTB_FREQ = (3.4e9 * 2);
static const double ADF5355_PHASE_RESYNC_TIME = 400e-6;
static const uint32_t ADF5355_MOD1 = 16777216;
static const uint32_t ADF5355_MAX_MOD2 = 16384;
static const uint16_t ADF5355_MIN_INT_PRESCALER_89 = 75;
class adf5355_impl : public adf5355_iface
{
public:
adf5355_impl(write_fn_t write_fn) :
_write_fn(write_fn),
_regs(),
_rewrite_regs(true),
_wait_time_us(0),
_ref_freq(0.0),
_pfd_freq(0.0),
_fb_after_divider(false)
{
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_DISABLED;
_regs.cp_three_state = adf5355_regs_t::CP_THREE_STATE_DISABLED;
_regs.power_down = adf5355_regs_t::POWER_DOWN_DISABLED;
_regs.pd_polarity = adf5355_regs_t::PD_POLARITY_POSITIVE;
_regs.mux_logic = adf5355_regs_t::MUX_LOGIC_3_3V;
_regs.ref_mode = adf5355_regs_t::REF_MODE_SINGLE;
_regs.muxout = adf5355_regs_t::MUXOUT_DLD;
_regs.double_buff_div = adf5355_regs_t::DOUBLE_BUFF_DIV_DISABLED;
_regs.rf_out_a_enabled = adf5355_regs_t::RF_OUT_A_ENABLED_ENABLED;
_regs.rf_out_b_enabled = adf5355_regs_t::RF_OUT_B_ENABLED_DISABLED;
_regs.mute_till_lock_detect = adf5355_regs_t::MUTE_TILL_LOCK_DETECT_MUTE_DISABLED;
_regs.ld_mode = adf5355_regs_t::LD_MODE_FRAC_N;
_regs.frac_n_ld_precision = adf5355_regs_t::FRAC_N_LD_PRECISION_5NS;
_regs.ld_cyc_count = adf5355_regs_t::LD_CYC_COUNT_1024;
_regs.le_sync = adf5355_regs_t::LE_SYNC_LE_SYNCED_TO_REFIN;
_regs.phase_resync = adf5355_regs_t::PHASE_RESYNC_DISABLED;
_regs.reference_divide_by_2 = adf5355_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
_regs.reference_doubler = adf5355_regs_t::REFERENCE_DOUBLER_DISABLED;
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_ENABLED;
_regs.prescaler = adf5355_regs_t::PRESCALER_4_5;
_regs.charge_pump_current = adf5355_regs_t::CHARGE_PUMP_CURRENT_0_94MA;
_regs.gated_bleed = adf5355_regs_t::GATED_BLEED_DISABLED;
_regs.negative_bleed = adf5355_regs_t::NEGATIVE_BLEED_ENABLED;
_regs.feedback_select = adf5355_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
_regs.output_power = adf5355_regs_t::OUTPUT_POWER_5DBM;
_regs.cp_bleed_current = 2;
_regs.r_counter_10_bit = 8;
_regs.ld_cyc_count = adf5355_regs_t::LD_CYC_COUNT_1024;
_regs.loss_of_lock_mode = adf5355_regs_t::LOSS_OF_LOCK_MODE_DISABLED;
_regs.frac_n_ld_precision = adf5355_regs_t::FRAC_N_LD_PRECISION_5NS;
_regs.ld_mode = adf5355_regs_t::LD_MODE_FRAC_N;
_regs.vco_band_div = 3;
_regs.timeout = 11;
_regs.auto_level_timeout = 30;
_regs.synth_lock_timeout = 12;
_regs.adc_clock_divider = 16;
_regs.adc_conversion = adf5355_regs_t::ADC_CONVERSION_ENABLED;
_regs.adc_enable = adf5355_regs_t::ADC_ENABLE_ENABLED;
_regs.phase_resync_clk_div = 0;
}
~adf5355_impl()
{
_regs.power_down = adf5355_regs_t::POWER_DOWN_ENABLED;
commit();
}
void set_feedback_select(feedback_sel_t fb_sel)
{
_fb_after_divider = (fb_sel == FB_SEL_DIVIDED);
if (_fb_after_divider) {
_regs.feedback_select = adf5355_regs_t::FEEDBACK_SELECT_DIVIDED;
} else {
_regs.feedback_select = adf5355_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
}
}
void set_reference_freq(double fref, bool force = false)
{
//Skip the body if the reference frequency does not change
if (uhd::math::frequencies_are_equal(fref, _ref_freq) and (not force))
return;
_ref_freq = fref;
//-----------------------------------------------------------
//Set reference settings
//Reference doubler for 50% duty cycle
bool doubler_en = (_ref_freq <= ADF5355_DOUBLER_MAX_REF_FREQ);
/* Calculate and maximize PFD frequency */
// TODO Target PFD should be configurable
/* TwinRX requires PFD of 6.25 MHz or less */
const double TWINRX_PFD_FREQ = 6.25e6;
_pfd_freq = TWINRX_PFD_FREQ;
int ref_div_factor = 16;
//Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to to regs.reference_divide_by_2
bool div2_en = (ref_div_factor % 2 == 0);
if (div2_en) {
ref_div_factor /= 2;
}
_regs.reference_divide_by_2 = div2_en ?
adf5355_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED :
adf5355_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
_regs.reference_doubler = doubler_en ?
adf5355_regs_t::REFERENCE_DOUBLER_ENABLED :
adf5355_regs_t::REFERENCE_DOUBLER_DISABLED;
_regs.r_counter_10_bit = ref_div_factor;
UHD_ASSERT_THROW((_regs.r_counter_10_bit & ((uint16_t)~0x3FF)) == 0);
//-----------------------------------------------------------
//Set timeouts (code from ADI driver)
_regs.timeout = clamp<uint16_t>(
static_cast<uint16_t>(ceil(_pfd_freq / (20e3 * 30))), 1, 1023);
UHD_ASSERT_THROW((_regs.timeout & ((uint16_t)~0x3FF)) == 0);
_regs.synth_lock_timeout =
static_cast<uint8_t>(ceil((_pfd_freq * 2) / (100e3 * _regs.timeout)));
UHD_ASSERT_THROW((_regs.synth_lock_timeout & ((uint16_t)~0x1F)) == 0);
_regs.auto_level_timeout =
static_cast<uint8_t>(ceil((_pfd_freq * 5) / (100e3 * _regs.timeout)));
//-----------------------------------------------------------
//Set VCO band divider
_regs.vco_band_div =
static_cast<uint8_t>(ceil(_pfd_freq / 2.4e6));
//-----------------------------------------------------------
//Set ADC delay (code from ADI driver)
_regs.adc_enable = adf5355_regs_t::ADC_ENABLE_ENABLED;
_regs.adc_conversion = adf5355_regs_t::ADC_CONVERSION_ENABLED;
_regs.adc_clock_divider = clamp<uint8_t>(
static_cast<uint8_t>(ceil(((_pfd_freq / 100e3) - 2) / 4)), 1, 255);
_wait_time_us = static_cast<uint32_t>(
ceil(16e6 / (_pfd_freq / ((4 * _regs.adc_clock_divider) + 2))));
//-----------------------------------------------------------
//Phase resync
_regs.phase_resync = adf5355_regs_t::PHASE_RESYNC_DISABLED; // Disabled during development
_regs.phase_adjust = adf5355_regs_t::PHASE_ADJUST_DISABLED;
_regs.sd_load_reset = adf5355_regs_t::SD_LOAD_RESET_ON_REG0_UPDATE;
_regs.phase_resync_clk_div = static_cast<uint16_t>(
floor(ADF5355_PHASE_RESYNC_TIME * _pfd_freq));
_rewrite_regs = true;
}
void set_output_power(output_power_t power)
{
adf5355_regs_t::output_power_t setting;
switch (power) {
case OUTPUT_POWER_M4DBM: setting = adf5355_regs_t::OUTPUT_POWER_M4DBM; break;
case OUTPUT_POWER_M1DBM: setting = adf5355_regs_t::OUTPUT_POWER_M1DBM; break;
case OUTPUT_POWER_2DBM: setting = adf5355_regs_t::OUTPUT_POWER_2DBM; break;
case OUTPUT_POWER_5DBM: setting = adf5355_regs_t::OUTPUT_POWER_5DBM; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
if (_regs.output_power != setting) _rewrite_regs = true;
_regs.output_power = setting;
}
void set_output_enable(output_t output, bool enable) {
switch (output) {
case RF_OUTPUT_A: _regs.rf_out_a_enabled = enable ? adf5355_regs_t::RF_OUT_A_ENABLED_ENABLED :
adf5355_regs_t::RF_OUT_A_ENABLED_DISABLED;
break;
case RF_OUTPUT_B: _regs.rf_out_b_enabled = enable ? adf5355_regs_t::RF_OUT_B_ENABLED_ENABLED :
adf5355_regs_t::RF_OUT_B_ENABLED_DISABLED;
break;
}
}
void set_muxout_mode(muxout_t mode)
{
switch (mode) {
case MUXOUT_3STATE: _regs.muxout = adf5355_regs_t::MUXOUT_3STATE; break;
case MUXOUT_DVDD: _regs.muxout = adf5355_regs_t::MUXOUT_DVDD; break;
case MUXOUT_DGND: _regs.muxout = adf5355_regs_t::MUXOUT_DGND; break;
case MUXOUT_RDIV: _regs.muxout = adf5355_regs_t::MUXOUT_RDIV; break;
case MUXOUT_NDIV: _regs.muxout = adf5355_regs_t::MUXOUT_NDIV; break;
case MUXOUT_ALD: _regs.muxout = adf5355_regs_t::MUXOUT_ANALOG_LD; break;
case MUXOUT_DLD: _regs.muxout = adf5355_regs_t::MUXOUT_DLD; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
}
double set_frequency(double target_freq, double freq_resolution, bool flush = false)
{
if (target_freq > ADF5355_MAX_OUT_FREQ or target_freq < ADF5355_MIN_OUT_FREQ) {
throw uhd::runtime_error("requested frequency out of range.");
}
if ((uint32_t) freq_resolution == 0) {
throw uhd::runtime_error("requested resolution cannot be less than 1.");
}
/* Calculate target VCOout frequency */
//Increase RF divider until acceptable VCO frequency
double target_vco_freq = target_freq;
uint32_t rf_divider = 1;
while (target_vco_freq < ADF5355_MIN_VCO_FREQ && rf_divider < 64) {
target_vco_freq *= 2;
rf_divider *= 2;
}
switch (rf_divider) {
case 1: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV1; break;
case 2: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV2; break;
case 4: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV4; break;
case 8: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV8; break;
case 16: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV16; break;
case 32: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV32; break;
case 64: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV64; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
//Compute fractional PLL params
double prescaler_input_freq = target_vco_freq;
if (_fb_after_divider) {
prescaler_input_freq /= rf_divider;
}
double N = prescaler_input_freq / _pfd_freq;
uint16_t INT = static_cast<uint16_t>(floor(N));
uint32_t FRAC1 = static_cast<uint32_t>(floor((N - INT) * ADF5355_MOD1));
double residue = ADF5355_MOD1 * (N - (INT + FRAC1 / ADF5355_MOD1));
double gcd = boost::math::gcd(static_cast<int>(_pfd_freq), static_cast<int>(freq_resolution));
uint16_t MOD2 = static_cast<uint16_t>(floor(_pfd_freq / gcd));
if (MOD2 > ADF5355_MAX_MOD2) {
MOD2 = ADF5355_MAX_MOD2;
}
uint16_t FRAC2 = ceil(residue * MOD2);
double coerced_vco_freq = _pfd_freq * (
todbl(INT) + (
(todbl(FRAC1) +
(todbl(FRAC2) / todbl(MOD2)))
/ todbl(ADF5355_MOD1)
)
);
double coerced_out_freq = coerced_vco_freq / rf_divider;
/* Update registers */
_regs.int_16_bit = INT;
_regs.frac1_24_bit = FRAC1;
_regs.frac2_14_bit = FRAC2;
_regs.mod2_14_bit = MOD2;
_regs.phase_24_bit = 0;
/*
if (_regs.int_16_bit >= ADF5355_MIN_INT_PRESCALER_89) {
_regs.prescaler = adf5355_regs_t::PRESCALER_8_9;
} else {
_regs.prescaler = adf5355_regs_t::PRESCALER_4_5;
}
// ADI: Tests have shown that the optimal bleed set is the following:
// 4/N < IBLEED/ICP < 10/N */
/*
uint32_t cp_curr_ua =
(static_cast<uint32_t>(_regs.charge_pump_current) + 1) * 315;
_regs.cp_bleed_current = clamp<uint8_t>(
ceil((todbl(400)*cp_curr_ua) / (_regs.int_16_bit*375)), 1, 255);
_regs.negative_bleed = adf5355_regs_t::NEGATIVE_BLEED_ENABLED;
_regs.gated_bleed = adf5355_regs_t::GATED_BLEED_DISABLED;
*/
if (flush) commit();
return coerced_out_freq;
}
void commit()
{
if (_rewrite_regs) {
//For a full state sync write registers in reverse order 12 - 0
addr_vtr_t regs;
for (int addr = 12; addr >= 0; addr--) {
regs.push_back(_regs.get_reg(uint32_t(addr)));
}
_write_fn(regs);
_rewrite_regs = false;
} else {
//Frequency update sequence from data sheet
static const size_t ONE_REG = 1;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(6)));
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_ENABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(2)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(1)));
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_DISABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_DISABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
boost::this_thread::sleep(boost::posix_time::microsec(_wait_time_us));
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_ENABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
}
}
private: //Members
typedef std::vector<uint32_t> addr_vtr_t;
write_fn_t _write_fn;
adf5355_regs_t _regs;
bool _rewrite_regs;
uint32_t _wait_time_us;
double _ref_freq;
double _pfd_freq;
double _fb_after_divider;
};
adf5355_iface::sptr adf5355_iface::make(write_fn_t write)
{
return sptr(new adf5355_impl(write));
}
|