1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
//
// Copyright 2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#ifndef INCLUDED_ADF435X_HPP
#define INCLUDED_ADF435X_HPP
#include <uhd/exception.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/utils/log.hpp>
#include <boost/function.hpp>
#include <boost/thread.hpp>
#include <boost/math/special_functions/round.hpp>
#include <vector>
#include "adf4350_regs.hpp"
#include "adf4351_regs.hpp"
class adf435x_iface
{
public:
typedef boost::shared_ptr<adf435x_iface> sptr;
typedef boost::function<void(std::vector<uint32_t>)> write_fn_t;
static sptr make_adf4350(write_fn_t write);
static sptr make_adf4351(write_fn_t write);
virtual ~adf435x_iface() = 0;
enum output_t { RF_OUTPUT_A, RF_OUTPUT_B };
enum prescaler_t { PRESCALER_4_5, PRESCALER_8_9 };
enum feedback_sel_t { FB_SEL_FUNDAMENTAL, FB_SEL_DIVIDED };
enum output_power_t { OUTPUT_POWER_M4DBM, OUTPUT_POWER_M1DBM, OUTPUT_POWER_2DBM, OUTPUT_POWER_5DBM };
enum muxout_t { MUXOUT_3STATE, MUXOUT_DVDD, MUXOUT_DGND, MUXOUT_RDIV, MUXOUT_NDIV, MUXOUT_ALD, MUXOUT_DLD };
/**
* Charge Pump Currents
*/
enum charge_pump_current_t {
CHARGE_PUMP_CURRENT_0_31MA = 0,
CHARGE_PUMP_CURRENT_0_63MA = 1,
CHARGE_PUMP_CURRENT_0_94MA = 2,
CHARGE_PUMP_CURRENT_1_25MA = 3,
CHARGE_PUMP_CURRENT_1_56MA = 4,
CHARGE_PUMP_CURRENT_1_88MA = 5,
CHARGE_PUMP_CURRENT_2_19MA = 6,
CHARGE_PUMP_CURRENT_2_50MA = 7,
CHARGE_PUMP_CURRENT_2_81MA = 8,
CHARGE_PUMP_CURRENT_3_13MA = 9,
CHARGE_PUMP_CURRENT_3_44MA = 10,
CHARGE_PUMP_CURRENT_3_75MA = 11,
CHARGE_PUMP_CURRENT_4_07MA = 12,
CHARGE_PUMP_CURRENT_4_38MA = 13,
CHARGE_PUMP_CURRENT_4_69MA = 14,
CHARGE_PUMP_CURRENT_5_00MA = 15
};
virtual void set_reference_freq(double fref) = 0;
virtual void set_prescaler(prescaler_t prescaler) = 0;
virtual void set_feedback_select(feedback_sel_t fb_sel) = 0;
virtual void set_output_power(output_t output, output_power_t power) = 0;
void set_output_power(output_power_t power) {
set_output_power(RF_OUTPUT_A, power);
}
virtual void set_output_enable(output_t output, bool enable) = 0;
virtual void set_muxout_mode(muxout_t mode) = 0;
virtual void set_charge_pump_current(charge_pump_current_t cp_current) = 0;
virtual uhd::range_t get_int_range() = 0;
virtual double set_frequency(double target_freq, bool int_n_mode, bool flush = false) = 0;
virtual void commit(void) = 0;
};
template <typename adf435x_regs_t>
class adf435x_impl : public adf435x_iface
{
public:
adf435x_impl(write_fn_t write_fn) :
_write_fn(write_fn),
_regs(),
_fb_after_divider(false),
_reference_freq(0.0),
_N_min(-1)
{}
virtual ~adf435x_impl() {};
void set_reference_freq(double fref)
{
_reference_freq = fref;
}
void set_feedback_select(feedback_sel_t fb_sel)
{
_fb_after_divider = (fb_sel == FB_SEL_DIVIDED);
}
void set_prescaler(prescaler_t prescaler)
{
if (prescaler == PRESCALER_8_9) {
_regs.prescaler = adf435x_regs_t::PRESCALER_8_9;
_N_min = 75;
} else {
_regs.prescaler = adf435x_regs_t::PRESCALER_4_5;
_N_min = 23;
}
}
void set_output_power(output_t output, output_power_t power)
{
switch (output) {
case RF_OUTPUT_A:
switch (power) {
case OUTPUT_POWER_M4DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_M4DBM; break;
case OUTPUT_POWER_M1DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_M1DBM; break;
case OUTPUT_POWER_2DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_2DBM; break;
case OUTPUT_POWER_5DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_5DBM; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
break;
case RF_OUTPUT_B:
switch (power) {
case OUTPUT_POWER_M4DBM: _regs.aux_output_power = adf435x_regs_t::AUX_OUTPUT_POWER_M4DBM; break;
case OUTPUT_POWER_M1DBM: _regs.aux_output_power = adf435x_regs_t::AUX_OUTPUT_POWER_M1DBM; break;
case OUTPUT_POWER_2DBM: _regs.aux_output_power = adf435x_regs_t::AUX_OUTPUT_POWER_2DBM; break;
case OUTPUT_POWER_5DBM: _regs.aux_output_power = adf435x_regs_t::AUX_OUTPUT_POWER_5DBM; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void set_output_enable(output_t output, bool enable)
{
switch (output) {
case RF_OUTPUT_A: _regs.rf_output_enable = enable ? adf435x_regs_t::RF_OUTPUT_ENABLE_ENABLED:
adf435x_regs_t::RF_OUTPUT_ENABLE_DISABLED;
break;
case RF_OUTPUT_B: _regs.aux_output_enable = enable ? adf435x_regs_t::AUX_OUTPUT_ENABLE_ENABLED:
adf435x_regs_t::AUX_OUTPUT_ENABLE_DISABLED;
break;
}
}
void set_muxout_mode(muxout_t mode)
{
switch (mode) {
case MUXOUT_3STATE: _regs.muxout = adf435x_regs_t::MUXOUT_3STATE; break;
case MUXOUT_DVDD: _regs.muxout = adf435x_regs_t::MUXOUT_DVDD; break;
case MUXOUT_DGND: _regs.muxout = adf435x_regs_t::MUXOUT_DGND; break;
case MUXOUT_RDIV: _regs.muxout = adf435x_regs_t::MUXOUT_RDIV; break;
case MUXOUT_NDIV: _regs.muxout = adf435x_regs_t::MUXOUT_NDIV; break;
case MUXOUT_ALD: _regs.muxout = adf435x_regs_t::MUXOUT_ANALOG_LD; break;
case MUXOUT_DLD: _regs.muxout = adf435x_regs_t::MUXOUT_DLD; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
}
void set_charge_pump_current(charge_pump_current_t cp_current)
{
switch (cp_current) {
case CHARGE_PUMP_CURRENT_0_31MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_0_31MA; break;
case CHARGE_PUMP_CURRENT_0_63MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_0_63MA; break;
case CHARGE_PUMP_CURRENT_0_94MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_0_94MA; break;
case CHARGE_PUMP_CURRENT_1_25MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_1_25MA; break;
case CHARGE_PUMP_CURRENT_1_56MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_1_56MA; break;
case CHARGE_PUMP_CURRENT_1_88MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_1_88MA; break;
case CHARGE_PUMP_CURRENT_2_19MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_2_19MA; break;
case CHARGE_PUMP_CURRENT_2_50MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_2_50MA; break;
case CHARGE_PUMP_CURRENT_2_81MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_2_81MA; break;
case CHARGE_PUMP_CURRENT_3_13MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_3_13MA; break;
case CHARGE_PUMP_CURRENT_3_44MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_3_44MA; break;
case CHARGE_PUMP_CURRENT_3_75MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_3_75MA; break;
case CHARGE_PUMP_CURRENT_4_07MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_4_07MA; break;
case CHARGE_PUMP_CURRENT_4_38MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_4_38MA; break;
case CHARGE_PUMP_CURRENT_4_69MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_4_69MA; break;
case CHARGE_PUMP_CURRENT_5_00MA : _regs.charge_pump_current = adf435x_regs_t::CHARGE_PUMP_CURRENT_5_00MA; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
}
uhd::range_t get_int_range()
{
if (_N_min < 0) throw uhd::runtime_error("set_prescaler must be called before get_int_range");
return uhd::range_t(_N_min, 4095);
}
double set_frequency(double target_freq, bool int_n_mode, bool flush = false)
{
static const double REF_DOUBLER_THRESH_FREQ = 12.5e6;
static const double PFD_FREQ_MAX = 25.0e6;
static const double BAND_SEL_FREQ_MAX = 100e3;
static const double VCO_FREQ_MIN = 2.2e9;
static const double VCO_FREQ_MAX = 4.4e9;
//Default invalid value for actual_freq
double actual_freq = 0;
uhd::range_t rf_divider_range = _get_rfdiv_range();
uhd::range_t int_range = get_int_range();
double pfd_freq = 0;
uint16_t R = 0, BS = 0, N = 0, FRAC = 0, MOD = 0;
uint16_t RFdiv = static_cast<uint16_t>(rf_divider_range.start());
bool D = false, T = false;
//Reference doubler for 50% duty cycle
D = (_reference_freq <= REF_DOUBLER_THRESH_FREQ);
//increase RF divider until acceptable VCO frequency
double vco_freq = target_freq;
while (vco_freq < VCO_FREQ_MIN && RFdiv < static_cast<uint16_t>(rf_divider_range.stop())) {
vco_freq *= 2;
RFdiv *= 2;
}
/*
* The goal here is to loop though possible R dividers,
* band select clock dividers, N (int) dividers, and FRAC
* (frac) dividers.
*
* Calculate the N and F dividers for each set of values.
* The loop exits when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* from pg.21
*
* f_pfd = f_ref*(1+D)/(R*(1+T))
* f_vco = (N + (FRAC/MOD))*f_pfd
* N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
* f_actual = f_vco/RFdiv)
*/
double feedback_freq = _fb_after_divider ? target_freq : vco_freq;
for(R = 1; R <= 1023; R+=1){
//PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
pfd_freq = _reference_freq*(D?2:1)/(R*(T?2:1));
//keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
if (pfd_freq > PFD_FREQ_MAX) continue;
//First, ignore fractional part of tuning
N = uint16_t(std::floor(feedback_freq/pfd_freq));
//keep N > minimum int divider requirement
if (N < static_cast<uint16_t>(int_range.start())) continue;
for(BS=1; BS <= 255; BS+=1){
//keep the band select frequency at or below band_sel_freq_max
//constraint on band select clock
if (pfd_freq/BS > BAND_SEL_FREQ_MAX) continue;
goto done_loop;
}
} done_loop:
//Fractional-N calculation
MOD = 4095; //max fractional accuracy
FRAC = static_cast<uint16_t>(boost::math::round((feedback_freq/pfd_freq - N)*MOD));
if (int_n_mode) {
if (FRAC > (MOD / 2)) { //Round integer such that actual freq is closest to target
N++;
}
FRAC = 0;
}
//Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to to regs.reference_divide_by_2
if(R % 2 == 0) {
T = true;
R /= 2;
}
//Typical phase resync time documented in data sheet pg.24
static const double PHASE_RESYNC_TIME = 400e-6;
//If feedback after divider, then compensation for the divider is pulled into the INT value
int rf_div_compensation = _fb_after_divider ? 1 : RFdiv;
//Compute the actual frequency in terms of _reference_freq, N, FRAC, MOD, D, R and T.
actual_freq = (
double((N + (double(FRAC)/double(MOD))) *
(_reference_freq*(D?2:1)/(R*(T?2:1))))
) / rf_div_compensation;
_regs.frac_12_bit = FRAC;
_regs.int_16_bit = N;
_regs.mod_12_bit = MOD;
_regs.clock_divider_12_bit = std::max<uint16_t>(1, uint16_t(std::ceil(PHASE_RESYNC_TIME*pfd_freq/MOD)));
_regs.feedback_select = _fb_after_divider ?
adf435x_regs_t::FEEDBACK_SELECT_DIVIDED :
adf435x_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
_regs.clock_div_mode = _fb_after_divider ?
adf435x_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE :
adf435x_regs_t::CLOCK_DIV_MODE_FAST_LOCK;
_regs.r_counter_10_bit = R;
_regs.reference_divide_by_2 = T ?
adf435x_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED :
adf435x_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
_regs.reference_doubler = D ?
adf435x_regs_t::REFERENCE_DOUBLER_ENABLED :
adf435x_regs_t::REFERENCE_DOUBLER_DISABLED;
_regs.band_select_clock_div = uint8_t(BS);
_regs.rf_divider_select = static_cast<typename adf435x_regs_t::rf_divider_select_t>(_get_rfdiv_setting(RFdiv));
_regs.ldf = int_n_mode ?
adf435x_regs_t::LDF_INT_N :
adf435x_regs_t::LDF_FRAC_N;
std::string tuning_str = (int_n_mode) ? "Integer-N" : "Fractional";
UHD_LOGGER_TRACE("ADF435X")
<< boost::format("ADF 435X Frequencies (MHz): REQUESTED=%0.9f, ACTUAL=%0.9f")
% (target_freq/1e6) % (actual_freq/1e6)
<< boost::format("ADF 435X Intermediates (MHz): Feedback=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f, REF=%0.2f")
% (feedback_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) % (_reference_freq/1e6)
<< boost::format("ADF 435X Tuning: %s") % tuning_str.c_str()
<< boost::format("ADF 435X Settings: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d")
% R % BS % N % FRAC % MOD % T % D % RFdiv
;
UHD_ASSERT_THROW((_regs.frac_12_bit & ((uint16_t)~0xFFF)) == 0);
UHD_ASSERT_THROW((_regs.mod_12_bit & ((uint16_t)~0xFFF)) == 0);
UHD_ASSERT_THROW((_regs.clock_divider_12_bit & ((uint16_t)~0xFFF)) == 0);
UHD_ASSERT_THROW((_regs.r_counter_10_bit & ((uint16_t)~0x3FF)) == 0);
UHD_ASSERT_THROW(vco_freq >= VCO_FREQ_MIN and vco_freq <= VCO_FREQ_MAX);
UHD_ASSERT_THROW(RFdiv >= static_cast<uint16_t>(rf_divider_range.start()));
UHD_ASSERT_THROW(RFdiv <= static_cast<uint16_t>(rf_divider_range.stop()));
UHD_ASSERT_THROW(_regs.int_16_bit >= static_cast<uint16_t>(int_range.start()));
UHD_ASSERT_THROW(_regs.int_16_bit <= static_cast<uint16_t>(int_range.stop()));
if (flush) commit();
return actual_freq;
}
void commit()
{
//reset counters
_regs.counter_reset = adf435x_regs_t::COUNTER_RESET_ENABLED;
std::vector<uint32_t> regs;
regs.push_back(_regs.get_reg(uint32_t(2)));
_write_fn(regs);
_regs.counter_reset = adf435x_regs_t::COUNTER_RESET_DISABLED;
//write the registers
//correct power-up sequence to write registers (5, 4, 3, 2, 1, 0)
regs.clear();
for (int addr = 5; addr >= 0; addr--) {
regs.push_back(_regs.get_reg(uint32_t(addr)));
}
_write_fn(regs);
}
protected:
uhd::range_t _get_rfdiv_range();
int _get_rfdiv_setting(uint16_t div);
write_fn_t _write_fn;
adf435x_regs_t _regs;
double _fb_after_divider;
double _reference_freq;
int _N_min;
};
template <>
inline uhd::range_t adf435x_impl<adf4350_regs_t>::_get_rfdiv_range()
{
return uhd::range_t(1, 16);
}
template <>
inline uhd::range_t adf435x_impl<adf4351_regs_t>::_get_rfdiv_range()
{
return uhd::range_t(1, 64);
}
template <>
inline int adf435x_impl<adf4350_regs_t>::_get_rfdiv_setting(uint16_t div)
{
switch (div) {
case 1: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV1);
case 2: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV2);
case 4: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV4);
case 8: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV8);
case 16: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV16);
default: UHD_THROW_INVALID_CODE_PATH();
}
}
template <>
inline int adf435x_impl<adf4351_regs_t>::_get_rfdiv_setting(uint16_t div)
{
switch (div) {
case 1: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV1);
case 2: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV2);
case 4: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV4);
case 8: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV8);
case 16: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV16);
case 32: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV32);
case 64: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV64);
default: UHD_THROW_INVALID_CODE_PATH();
}
}
#endif // INCLUDED_ADF435X_HPP
|