1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/exception.hpp>
#include <uhd/rfnoc/constants.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/mb_controller.hpp>
#include <uhd/rfnoc/noc_block_make_args.hpp>
#include <uhd/rfnoc/node.hpp>
#include <uhd/rfnoc_graph.hpp>
#include <uhdlib/rfnoc/block_container.hpp>
#include <uhdlib/rfnoc/factory.hpp>
#include <uhdlib/rfnoc/graph.hpp>
#include <uhdlib/rfnoc/graph_stream_manager.hpp>
#include <uhdlib/rfnoc/rfnoc_device.hpp>
#include <uhdlib/rfnoc/rfnoc_rx_streamer.hpp>
#include <uhdlib/rfnoc/rfnoc_tx_streamer.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <memory>
using namespace uhd;
using namespace uhd::rfnoc;
namespace {
const std::string LOG_ID("RFNOC::GRAPH");
//! Which blocks are actually stored at a given port on the crossbar
struct block_xbar_info
{
size_t xbar_port;
noc_id_t noc_id;
size_t inst_num;
};
}
class rfnoc_graph_impl : public rfnoc_graph
{
public:
/**************************************************************************
* Structors
*************************************************************************/
rfnoc_graph_impl(detail::rfnoc_device::sptr dev, const uhd::device_addr_t& dev_addr)
try : _device(dev),
_tree(_device->get_tree()),
_num_mboards(_tree->list("/mboards").size()),
_block_registry(std::make_unique<detail::block_container_t>()),
_graph(std::make_unique<uhd::rfnoc::detail::graph_t>()) {
_mb_controllers.reserve(_num_mboards);
// Now initialize all subsystems:
_init_mb_controllers();
_init_gsm(); // Graph Stream Manager
try {
// If anything fails here, we immediately deinit all the other
// blocks to avoid any more fallout, then safely bring down the
// device.
for (size_t mb_idx = 0; mb_idx < _num_mboards; ++mb_idx) {
_init_blocks(mb_idx, dev_addr);
}
UHD_LOG_TRACE(LOG_ID, "Initializing properties on all blocks...");
_block_registry->init_props();
_init_sep_map();
_init_static_connections();
_init_mbc();
// Start with time set to zero, but don't complain if sync fails
rfnoc_graph_impl::synchronize_devices(uhd::time_spec_t(0.0), true);
} catch (...) {
_block_registry->shutdown();
throw;
}
} catch (const std::exception& ex) {
UHD_LOG_ERROR(LOG_ID, "Caught exception while initializing graph: " << ex.what());
throw uhd::runtime_error("Failure to create rfnoc_graph.");
} catch (...) {
UHD_LOG_ERROR(LOG_ID, "Caught unknown exception while initializing graph!");
throw uhd::runtime_error("Failure to create rfnoc_graph.");
}
~rfnoc_graph_impl()
{
UHD_LOG_TRACE(LOG_ID, "Releasing detail::graph...");
_graph->release();
UHD_LOG_TRACE(LOG_ID, "Shutting down all blocks ...");
_block_registry->shutdown();
_graph.reset();
}
/**************************************************************************
* Block Discovery/Retrieval
*************************************************************************/
std::vector<block_id_t> find_blocks(const std::string& block_id_hint) const
{
return _block_registry->find_blocks(block_id_hint);
}
bool has_block(const block_id_t& block_id) const
{
return _block_registry->has_block(block_id);
}
noc_block_base::sptr get_block(const block_id_t& block_id) const
{
return _block_registry->get_block(block_id);
}
/**************************************************************************
* Graph Connections
*************************************************************************/
bool is_connectable(const block_id_t& src_blk,
size_t src_port,
const block_id_t& dst_blk,
size_t dst_port)
{
try {
const std::string src_blk_info =
src_blk.to_string() + ":" + std::to_string(src_port);
const std::string dst_blk_info =
dst_blk.to_string() + ":" + std::to_string(dst_port);
// Find the static edge for src_blk:src_port
auto src_static_edge_o = _get_static_edge(
[src_blk_id = src_blk.to_string(), src_port](const graph_edge_t& edge) {
return edge.src_blockid == src_blk_id && edge.src_port == src_port;
});
// If the edge doesn't exist, then it's not even connected in the
// FPGA.
if (!src_static_edge_o) {
return false;
}
graph_edge_t src_static_edge = src_static_edge_o.get();
// Now see if it's already connected to the destination
if (src_static_edge.dst_blockid == dst_blk.to_string()
&& src_static_edge.dst_port == dst_port) {
return true;
}
// If they're not statically connected, the source *must* be connected
// to an SEP, or this route is impossible
if (block_id_t(src_static_edge.dst_blockid).get_block_name() != NODE_ID_SEP) {
return false;
}
// OK, now we know which source SEP we have
const std::string src_sep_info = src_static_edge.dst_blockid;
// const sep_addr_t src_sep_addr = _sep_map.at(src_sep_info);
// Now find the static edge for the destination SEP
auto dst_static_edge_o = _get_static_edge(
[dst_blk_id = dst_blk.to_string(), dst_port](const graph_edge_t& edge) {
return edge.dst_blockid == dst_blk_id && edge.dst_port == dst_port;
});
// If the edge doesn't exist, then it's not even connected in the
// FPGA.
if (!dst_static_edge_o) {
return false;
}
graph_edge_t dst_static_edge = dst_static_edge_o.get();
// If they're not statically connected, the source *must* be connected
// to an SEP, or this route is impossible
if (block_id_t(dst_static_edge.src_blockid).get_block_name() != NODE_ID_SEP) {
return false;
}
// OK, now we know which destination SEP we have
const std::string dst_sep_info = dst_static_edge.src_blockid;
// const sep_addr_t dst_sep_addr = _sep_map.at(dst_sep_info);
UHD_LOG_WARNING(LOG_ID,
"is_connectable() currently assuming that SEPs"
<< dst_sep_info << " and " << src_sep_info
<< " are connectable. "
"Please implement a better check.");
} catch (...) {
return false;
}
return true;
}
void connect(const block_id_t& src_blk,
size_t src_port,
const block_id_t& dst_blk,
size_t dst_port,
bool skip_property_propagation)
{
if (!has_block(src_blk)) {
throw uhd::lookup_error(
std::string("Cannot connect blocks, source block not found: ")
+ src_blk.to_string());
}
if (!has_block(dst_blk)) {
throw uhd::lookup_error(
std::string("Cannot connect blocks, destination block not found: ")
+ dst_blk.to_string());
}
auto edge_type = _physical_connect(src_blk, src_port, dst_blk, dst_port);
_connect(get_block(src_blk),
src_port,
get_block(dst_blk),
dst_port,
edge_type,
skip_property_propagation);
}
void connect(uhd::tx_streamer::sptr streamer,
size_t strm_port,
const block_id_t& dst_blk,
size_t dst_port,
uhd::transport::adapter_id_t adapter_id)
{
// Verify the streamer was created by us
auto rfnoc_streamer = std::dynamic_pointer_cast<rfnoc_tx_streamer>(streamer);
if (!rfnoc_streamer) {
throw uhd::type_error("Streamer is not rfnoc capable");
}
// Verify src_blk even exists in this graph
if (!has_block(dst_blk)) {
throw uhd::lookup_error(
std::string("Cannot connect block to streamer, source block not found: ")
+ dst_blk.to_string());
}
// Verify src_blk has an SEP upstream
graph_edge_t dst_static_edge = _assert_edge(
_get_static_edge(
[dst_blk_id = dst_blk.to_string(), dst_port](const graph_edge_t& edge) {
return edge.dst_blockid == dst_blk_id && edge.dst_port == dst_port;
}),
dst_blk.to_string());
if (block_id_t(dst_static_edge.src_blockid).get_block_name() != NODE_ID_SEP) {
const std::string err_msg =
dst_blk.to_string() + ":" + std::to_string(dst_port)
+ " is not connected to an SEP! Routing impossible.";
UHD_LOG_ERROR(LOG_ID, err_msg);
throw uhd::routing_error(err_msg);
}
// Now get the name and address of the SEP
const std::string sep_block_id = dst_static_edge.src_blockid;
const sep_addr_t sep_addr = _sep_map.at(sep_block_id);
const sw_buff_t pyld_fmt =
bits_to_sw_buff(rfnoc_streamer->get_otw_item_comp_bit_width());
const sw_buff_t mdata_fmt = BUFF_U64;
auto xport = _gsm->create_host_to_device_data_stream(sep_addr,
pyld_fmt,
mdata_fmt,
adapter_id,
rfnoc_streamer->get_stream_args().args);
rfnoc_streamer->connect_channel(strm_port, std::move(xport));
//// If this worked, then also connect the streamer in the BGL graph
auto dst = get_block(dst_blk);
graph_edge_t edge_info(strm_port, dst_port, graph_edge_t::TX_STREAM, true);
_graph->connect(rfnoc_streamer.get(), dst.get(), edge_info);
}
void connect(const block_id_t& src_blk,
size_t src_port,
uhd::rx_streamer::sptr streamer,
size_t strm_port,
uhd::transport::adapter_id_t adapter_id)
{
// Verify the streamer was created by us
auto rfnoc_streamer = std::dynamic_pointer_cast<rfnoc_rx_streamer>(streamer);
if (!rfnoc_streamer) {
throw uhd::type_error("Streamer is not rfnoc capable");
}
// Verify src_blk even exists in this graph
if (!has_block(src_blk)) {
throw uhd::lookup_error(
std::string("Cannot connect block to streamer, source block not found: ")
+ src_blk.to_string());
}
// Verify src_blk has an SEP downstream
graph_edge_t src_static_edge = _assert_edge(
_get_static_edge(
[src_blk_id = src_blk.to_string(), src_port](const graph_edge_t& edge) {
return edge.src_blockid == src_blk_id && edge.src_port == src_port;
}),
src_blk.to_string());
if (block_id_t(src_static_edge.dst_blockid).get_block_name() != NODE_ID_SEP) {
const std::string err_msg =
src_blk.to_string() + ":" + std::to_string(src_port)
+ " is not connected to an SEP! Routing impossible.";
UHD_LOG_ERROR(LOG_ID, err_msg);
throw uhd::routing_error(err_msg);
}
// Now get the name and address of the SEP
const std::string sep_block_id = src_static_edge.dst_blockid;
const sep_addr_t sep_addr = _sep_map.at(sep_block_id);
const sw_buff_t pyld_fmt =
bits_to_sw_buff(rfnoc_streamer->get_otw_item_comp_bit_width());
const sw_buff_t mdata_fmt = BUFF_U64;
auto xport = _gsm->create_device_to_host_data_stream(sep_addr,
pyld_fmt,
mdata_fmt,
adapter_id,
rfnoc_streamer->get_stream_args().args);
rfnoc_streamer->connect_channel(strm_port, std::move(xport));
// If this worked, then also connect the streamer in the BGL graph
auto src = get_block(src_blk);
graph_edge_t edge_info(src_port, strm_port, graph_edge_t::RX_STREAM, true);
_graph->connect(src.get(), rfnoc_streamer.get(), edge_info);
}
uhd::rx_streamer::sptr create_rx_streamer(
const size_t num_chans, const uhd::stream_args_t& args)
{
_rx_streamers.push_back(std::make_shared<rfnoc_rx_streamer>(num_chans, args));
return _rx_streamers.back();
}
uhd::tx_streamer::sptr create_tx_streamer(
const size_t num_chans, const uhd::stream_args_t& args)
{
_tx_streamers.push_back(std::make_shared<rfnoc_tx_streamer>(num_chans, args));
return _tx_streamers.back();
}
size_t get_num_mboards() const
{
return _num_mboards;
}
std::shared_ptr<mb_controller> get_mb_controller(const size_t mb_index = 0)
{
if (_mb_controllers.size() <= mb_index) {
throw uhd::index_error(
std::string("Could not get mb controller for motherboard index ")
+ std::to_string(mb_index));
}
return _mb_controllers.at(mb_index);
}
bool synchronize_devices(const uhd::time_spec_t& time_spec, const bool quiet)
{
auto mb_controllers_copy = _mb_controllers;
bool result =
_mb_controllers.at(0)->synchronize(mb_controllers_copy, time_spec, quiet);
if (mb_controllers_copy.size() != _mb_controllers.size()) {
// This shouldn't happen until we allow different device types in a
// rfnoc_graph
UHD_LOG_ERROR(LOG_ID, "Some devices wouldn't be sync'd!");
return false;
}
return result;
}
uhd::property_tree::sptr get_tree(void) const
{
return _tree;
}
std::vector<uhd::transport::adapter_id_t> enumerate_adapters_to_dst(
const block_id_t& dst_blk, size_t dst_port)
{
// Verify dst_blk even exists in this graph
if (!has_block(dst_blk)) {
throw uhd::lookup_error(
std::string("Cannot connect block to streamer, source block not found: ")
+ dst_blk.to_string());
}
// Verify dst_blk has an SEP upstream
graph_edge_t dst_static_edge = _assert_edge(
_get_static_edge(
[dst_blk_id = dst_blk.to_string(), dst_port](const graph_edge_t& edge) {
return edge.dst_blockid == dst_blk_id && edge.dst_port == dst_port;
}),
dst_blk.to_string());
if (block_id_t(dst_static_edge.src_blockid).get_block_name() != NODE_ID_SEP) {
const std::string err_msg =
dst_blk.to_string() + ":" + std::to_string(dst_port)
+ " is not connected to an SEP! Routing impossible.";
UHD_LOG_ERROR(LOG_ID, err_msg);
throw uhd::routing_error(err_msg);
}
// Now get the name and address of the SEP
const std::string sep_block_id = dst_static_edge.src_blockid;
const sep_addr_t sep_addr = _sep_map.at(sep_block_id);
// Find links that can reach the SEP
return _gsm->get_adapters(sep_addr);
}
std::vector<uhd::transport::adapter_id_t> enumerate_adapters_from_src(
const block_id_t& src_blk, size_t src_port)
{
// Verify src_blk even exists in this graph
if (!has_block(src_blk)) {
throw uhd::lookup_error(
std::string("Cannot connect block to streamer, source block not found: ")
+ src_blk.to_string());
}
// Verify src_blk has an SEP downstream
graph_edge_t src_static_edge = _assert_edge(
_get_static_edge(
[src_blk_id = src_blk.to_string(), src_port](const graph_edge_t& edge) {
return edge.src_blockid == src_blk_id && edge.src_port == src_port;
}),
src_blk.to_string());
if (block_id_t(src_static_edge.dst_blockid).get_block_name() != NODE_ID_SEP) {
const std::string err_msg =
src_blk.to_string() + ":" + std::to_string(src_port)
+ " is not connected to an SEP! Routing impossible.";
UHD_LOG_ERROR(LOG_ID, err_msg);
throw uhd::routing_error(err_msg);
}
// Now get the name and address of the SEP
const std::string sep_block_id = src_static_edge.dst_blockid;
const sep_addr_t sep_addr = _sep_map.at(sep_block_id);
// Find links that can reach the SEP
return _gsm->get_adapters(sep_addr);
}
std::vector<graph_edge_t> enumerate_active_connections()
{
return _graph->enumerate_edges();
}
std::vector<graph_edge_t> enumerate_static_connections() const
{
return _static_edges;
}
void commit()
{
_graph->commit();
}
void release()
{
_graph->release();
}
private:
/**************************************************************************
* Device Setup
*************************************************************************/
void _init_mb_controllers()
{
UHD_LOG_TRACE(LOG_ID, "Initializing MB controllers...");
for (size_t i = 0; i < _num_mboards; ++i) {
_mb_controllers.push_back(_device->get_mb_controller(i));
}
}
void _init_gsm()
{
UHD_LOG_TRACE(LOG_ID, "Initializing GSM...");
auto e2s = [](uhd::endianness_t endianness) {
return endianness == uhd::ENDIANNESS_BIG ? "BIG" : "LITTLE";
};
const chdr_w_t chdr_w = _device->get_mb_iface(0).get_chdr_w();
const uhd::endianness_t endianness = _device->get_mb_iface(0).get_endianness();
for (size_t mb_idx = 1; mb_idx < _num_mboards; mb_idx++) {
if (_device->get_mb_iface(mb_idx).get_chdr_w() != chdr_w) {
throw uhd::runtime_error(
std::string("Non-homogenous devices: Graph CHDR width is ")
+ std::to_string(chdr_w_to_bits(chdr_w)) + " but device "
+ std::to_string(mb_idx) + " has CHDR width of "
+ std::to_string(
chdr_w_to_bits(_device->get_mb_iface(mb_idx).get_chdr_w()))
+ " bits!");
}
if (_device->get_mb_iface(mb_idx).get_endianness() != endianness) {
throw uhd::runtime_error(
std::string("Non-homogenous devices: Graph endianness is ")
+ e2s(endianness) + " but device " + std::to_string(mb_idx)
+ " has endianness " + e2s(endianness) + "!");
}
}
UHD_LOG_TRACE(LOG_ID,
"Creating packet factory with CHDR width "
<< chdr_w_to_bits(chdr_w) << " bits and endianness " << e2s(endianness));
_pkt_factory = std::make_unique<chdr::chdr_packet_factory>(chdr_w, endianness);
// Create a collection of link definitions: (ID, MB) pairs
std::vector<std::pair<device_id_t, mb_iface*>> links;
for (size_t mb_idx = 0; mb_idx < _num_mboards; mb_idx++) {
const auto device_ids = _device->get_mb_iface(mb_idx).get_local_device_ids();
for (const device_id_t local_device_id : device_ids) {
if (_device->get_mb_iface(mb_idx).get_endianness(local_device_id)
!= endianness) {
throw uhd::runtime_error(
std::string("Non-homogenous devices: Graph endianness is ")
+ e2s(endianness) + " but device " + std::to_string(mb_idx)
+ " has endianness " + e2s(endianness) + "!");
}
links.push_back(
std::make_pair(local_device_id, &_device->get_mb_iface(mb_idx)));
}
}
if (links.empty()) {
UHD_LOG_ERROR(
LOG_ID, "No links found for " << _num_mboards << " motherboards!");
throw uhd::runtime_error("[rfnoc_graph] No links found!");
}
UHD_LOG_TRACE(LOG_ID, "Found a total of " << links.size() << " links.");
try {
_gsm = graph_stream_manager::make(*_pkt_factory, _epid_alloc, links);
} catch (uhd::io_error& ex) {
UHD_LOG_ERROR(LOG_ID, "IO Error during GSM initialization. " << ex.what());
throw;
}
// Configure endpoint_manager, make sure all routes are established
// FIXME
}
// Initialize client zero and all block controllers for motherboard mb_idx
void _init_blocks(const size_t mb_idx, const uhd::device_addr_t& dev_addr)
{
UHD_LOG_TRACE(LOG_ID, "Initializing blocks for MB " << mb_idx << "...");
// Setup the interfaces for this mboard and get some configuration info
mb_iface& mb = _device->get_mb_iface(mb_idx);
// Ask GSM to allow us to talk to our remote mb
sep_addr_t ctrl_sep_addr(mb.get_remote_device_id(), 0);
_gsm->connect_host_to_device(ctrl_sep_addr);
// Grab and stash the Client Zero for this mboard
detail::client_zero::sptr mb_cz = _gsm->get_client_zero(ctrl_sep_addr);
// Client zero port numbers are based on the control xbar numbers,
// which have the client 0 interface first, followed by stream
// endpoints, and then the blocks.
_client_zeros.emplace(mb_idx, mb_cz);
const size_t num_blocks = mb_cz->get_num_blocks();
const size_t first_block_port = 1 + mb_cz->get_num_stream_endpoints();
/* Flush and reset each block in the mboard
* We do this before we enumerate the blocks to ensure they're in a clean
* state before we construct their block controller, and so that we don't
* reset any setting that the block controller writes
*/
_flush_and_reset_mboard(mb_idx, mb_cz, num_blocks, first_block_port);
// Make a map to count the number of each block we have
std::unordered_map<std::string, uint16_t> block_count_map;
// Iterate through and register each of the blocks in this mboard
for (size_t portno = 0; portno < num_blocks; ++portno) {
const auto noc_id = mb_cz->get_noc_id(portno + first_block_port);
const auto device_type = mb_cz->get_device_type();
auto block_factory_info = factory::get_block_factory(noc_id, device_type);
auto block_info = mb_cz->get_block_info(portno + first_block_port);
block_id_t block_id(mb_idx,
block_factory_info.block_name,
block_count_map[block_factory_info.block_name]++);
// Get access to the clock interface objects. We have some rules
// here:
// - The ctrlport clock must always be provided through the
// BSP via mb_iface
// - The timebase clock can be set to CLOCK_KEY_GRAPH, which means
// the block takes care of the timebase itself (via property
// propagation). In that case, we generate a clock iface
// object on the fly here.
// - In all other cases, the BSP must provide us that clock
// iface object through the mb_iface
auto ctrlport_clk_iface = mb.get_clock_iface(block_factory_info.ctrlport_clk);
auto tb_clk_iface = (block_factory_info.timebase_clk == CLOCK_KEY_GRAPH)
? std::make_shared<clock_iface>(CLOCK_KEY_GRAPH)
: mb.get_clock_iface(block_factory_info.timebase_clk);
// A "graph" clock is always "running"
if (block_factory_info.timebase_clk == CLOCK_KEY_GRAPH) {
tb_clk_iface->set_running(true);
}
auto block_reg_iface = _gsm->get_block_register_iface(
ctrl_sep_addr, portno, *ctrlport_clk_iface.get(), *tb_clk_iface.get());
auto make_args_uptr = std::make_unique<noc_block_base::make_args_t>();
make_args_uptr->noc_id = noc_id;
make_args_uptr->block_id = block_id;
make_args_uptr->num_input_ports = block_info.num_inputs;
make_args_uptr->num_output_ports = block_info.num_outputs;
make_args_uptr->mtu =
(1 << block_info.data_mtu) * chdr_w_to_bits(mb.get_chdr_w()) / 8;
make_args_uptr->reg_iface = block_reg_iface;
make_args_uptr->tb_clk_iface = tb_clk_iface;
make_args_uptr->ctrlport_clk_iface = ctrlport_clk_iface;
make_args_uptr->mb_control =
block_factory_info.mb_access ? _mb_controllers.at(mb_idx) : nullptr;
const uhd::fs_path block_path(uhd::fs_path("/blocks") / block_id.to_string());
_tree->create<uint32_t>(block_path / "noc_id").set(noc_id);
make_args_uptr->tree = _tree->subtree(block_path);
make_args_uptr->args = dev_addr; // TODO filter the device args
try {
_block_registry->register_block(
block_factory_info.factory_fn(std::move(make_args_uptr)));
} catch (...) {
UHD_LOG_ERROR(
LOG_ID, "Error during initialization of block " << block_id << "!");
throw;
}
_xbar_block_config[block_id.to_string()] = {
portno, noc_id, block_id.get_block_count()};
_port_block_map.insert({{mb_idx, portno + first_block_port}, block_id});
}
}
void _init_sep_map()
{
for (size_t mb_idx = 0; mb_idx < _num_mboards; ++mb_idx) {
auto remote_device_id = _device->get_mb_iface(mb_idx).get_remote_device_id();
auto& cz = _client_zeros.at(mb_idx);
for (size_t sep_idx = 0; sep_idx < cz->get_num_stream_endpoints();
++sep_idx) {
// Register ID in _port_block_map
block_id_t id(mb_idx, NODE_ID_SEP, sep_idx);
_port_block_map.insert({{mb_idx, sep_idx + 1}, id});
_sep_map.insert({id.to_string(), sep_addr_t(remote_device_id, sep_idx)});
}
}
}
void _init_static_connections()
{
UHD_LOG_TRACE(LOG_ID, "Identifying static connections...");
for (auto& kv_cz : _client_zeros) {
auto& adjacency_list = kv_cz.second->get_adjacency_list();
for (auto& edge : adjacency_list) {
// Assemble edge
auto graph_edge = graph_edge_t();
UHD_ASSERT_THROW(
_port_block_map.count({kv_cz.first, edge.src_blk_index}));
graph_edge.src_blockid =
_port_block_map.at({kv_cz.first, edge.src_blk_index});
UHD_ASSERT_THROW(
_port_block_map.count({kv_cz.first, edge.dst_blk_index}));
graph_edge.dst_blockid =
_port_block_map.at({kv_cz.first, edge.dst_blk_index});
graph_edge.src_port = edge.src_blk_port;
graph_edge.dst_port = edge.dst_blk_port;
graph_edge.edge = graph_edge_t::edge_t::STATIC;
_static_edges.push_back(graph_edge);
UHD_LOG_TRACE(LOG_ID, "Static connection: " << graph_edge.to_string());
}
}
}
//! Initialize the motherboard controllers, if they require it
void _init_mbc()
{
for (size_t i = 0; i < _mb_controllers.size(); ++i) {
UHD_LOG_TRACE(LOG_ID, "Calling MBC init for motherboard " << i);
_mb_controllers.at(i)->init();
}
}
/**************************************************************************
* Helpers
*************************************************************************/
/*! Internal connection helper
*
* Make the connections in the _graph, and set up property propagation
* Prerequisite: \p src_blk and \p dst_blk need to point to valid nodes
*/
void _connect(std::shared_ptr<node_t> src_blk,
size_t src_port,
std::shared_ptr<node_t> dst_blk,
size_t dst_port,
graph_edge_t::edge_t edge_type,
bool skip_property_propagation)
{
graph_edge_t edge_info(
src_port, dst_port, edge_type, not skip_property_propagation);
edge_info.src_blockid = src_blk->get_unique_id();
edge_info.dst_blockid = dst_blk->get_unique_id();
_graph->connect(src_blk.get(), dst_blk.get(), edge_info);
}
/*! Internal physical connection helper
*
* Make the connections in the physical device
*
* \throws uhd::routing_error
* if the blocks are statically connected to something else
*/
graph_edge_t::edge_t _physical_connect(const block_id_t& src_blk,
size_t src_port,
const block_id_t& dst_blk,
size_t dst_port)
{
const std::string src_blk_info =
src_blk.to_string() + ":" + std::to_string(src_port);
const std::string dst_blk_info =
dst_blk.to_string() + ":" + std::to_string(dst_port);
// Find the static edge for src_blk:src_port
graph_edge_t src_static_edge = _assert_edge(
_get_static_edge(
[src_blk_id = src_blk.to_string(), src_port](const graph_edge_t& edge) {
return edge.src_blockid == src_blk_id && edge.src_port == src_port;
}),
src_blk_info);
// Now see if it's already connected to the destination
if (src_static_edge.dst_blockid == dst_blk.to_string()
&& src_static_edge.dst_port == dst_port) {
UHD_LOG_TRACE(LOG_ID,
"Blocks " << src_blk_info << " and " << dst_blk_info
<< " are already statically connected, no physical connection "
"required.");
return graph_edge_t::STATIC;
}
// If they're not statically connected, the source *must* be connected
// to an SEP, or this route is impossible
if (block_id_t(src_static_edge.dst_blockid).get_block_name() != NODE_ID_SEP) {
const std::string err_msg =
src_blk_info + " is neither statically connected to " + dst_blk_info
+ " nor to an SEP! Routing impossible.";
UHD_LOG_ERROR(LOG_ID, err_msg);
throw uhd::routing_error(err_msg);
}
// OK, now we know which source SEP we have
const std::string src_sep_info = src_static_edge.dst_blockid;
const sep_addr_t src_sep_addr = _sep_map.at(src_sep_info);
// Now find the static edge for the destination SEP
auto dst_static_edge = _assert_edge(
_get_static_edge(
[dst_blk_id = dst_blk.to_string(), dst_port](const graph_edge_t& edge) {
return edge.dst_blockid == dst_blk_id && edge.dst_port == dst_port;
}),
dst_blk_info);
// If they're not statically connected, the source *must* be connected
// to an SEP, or this route is impossible
if (block_id_t(dst_static_edge.src_blockid).get_block_name() != NODE_ID_SEP) {
const std::string err_msg =
dst_blk_info + " is neither statically connected to " + src_blk_info
+ " nor to an SEP! Routing impossible.";
UHD_LOG_ERROR(LOG_ID, err_msg);
throw uhd::routing_error(err_msg);
}
// OK, now we know which destination SEP we have
const std::string dst_sep_info = dst_static_edge.src_blockid;
const sep_addr_t dst_sep_addr = _sep_map.at(dst_sep_info);
// Now all we need to do is dynamically connect those SEPs
auto strm_info = _gsm->create_device_to_device_data_stream(
dst_sep_addr, src_sep_addr, false, 0.1, 0.0, false);
UHD_LOGGER_DEBUG(LOG_ID)
<< boost::format("Data stream between EPID %d and EPID %d established "
"where downstream buffer can hold %lu bytes and %u packets")
% std::get<0>(strm_info).first % std::get<0>(strm_info).second
% std::get<1>(strm_info).bytes % std::get<1>(strm_info).packets;
return graph_edge_t::DYNAMIC;
}
//! Flush and reset each connected port on the mboard
void _flush_and_reset_mboard(size_t mb_idx,
detail::client_zero::sptr mb_cz,
const size_t num_blocks,
const size_t first_block_port)
{
UHD_LOG_TRACE(LOG_ID,
std::string("Flushing and resetting blocks on mboard ")
+ std::to_string(mb_idx));
if (!mb_cz->complete_flush_all_blocks()) {
UHD_LOG_WARNING(LOG_ID, "One or more blocks timed out during flush!");
}
// Reset
for (size_t portno = 0; portno < num_blocks; ++portno) {
auto block_portno = portno + first_block_port;
mb_cz->reset_chdr(block_portno);
mb_cz->reset_ctrl(block_portno);
}
}
/*! Find the static edge that matches \p pred
*
* \throws uhd::assertion_error if the edge can't be found. So be careful!
*/
template <typename UnaryPredicate>
boost::optional<graph_edge_t> _get_static_edge(UnaryPredicate&& pred)
{
auto edge_it = std::find_if(_static_edges.cbegin(), _static_edges.cend(), pred);
if (edge_it == _static_edges.cend()) {
return boost::none;
}
return *edge_it;
}
/*! Make sure an optional edge info is valid, or throw.
*/
graph_edge_t _assert_edge(
boost::optional<graph_edge_t> edge_o, const std::string& blk_info)
{
if (!bool(edge_o)) {
const std::string err_msg = std::string("Cannot connect block ") + blk_info
+ ", port is unconnected in the FPGA!";
UHD_LOG_ERROR(LOG_ID, err_msg);
throw uhd::routing_error(err_msg);
}
return edge_o.get();
}
/**************************************************************************
* Attributes
*************************************************************************/
//! Reference to the underlying device implementation
detail::rfnoc_device::sptr _device;
//! Reference to the property tree
uhd::property_tree::sptr _tree;
//! Number of motherboards, this is technically redundant but useful for
// easy lookups.
size_t _num_mboards;
//! Registry for the blocks (it's a separate class)
std::unique_ptr<detail::block_container_t> _block_registry;
/*! Registry for the actual block connections on the crossbar
* When we register blocks in the _block_registry, we also need to store some
* information in this map so we can easily figure out which crossbar port a block
* controller is connected to
* \p keys are the string representation of the block ID
* \p values are the block crossbar information structs
* TODO: change from string block IDs to block_id_t with COOL custom hashing
*/
std::unordered_map<std::string, block_xbar_info> _xbar_block_config;
//! Reference to the graph
std::unique_ptr<detail::graph_t> _graph;
//! Stash a list of motherboard controllers
std::vector<mb_controller::sptr> _mb_controllers;
//! Stash of the client zeros for all motherboards
std::unordered_map<size_t, detail::client_zero::sptr> _client_zeros;
//! Map a pair (motherboard index, control crossbar port) to an RFNoC block
// or SEP
std::map<std::pair<size_t, size_t>, block_id_t> _port_block_map;
//! Map SEP block ID (e.g. 0/SEP#0) onto a sep_addr_t
std::unordered_map<std::string, sep_addr_t> _sep_map;
//! List of statically connected edges. Includes SEPs too!
std::vector<graph_edge_t> _static_edges;
//! uptr to graph stream manager
graph_stream_manager::uptr _gsm;
//! EPID allocator. Technically not required by the rfnoc_graph, but we'll
// store it here because it's such a central thing.
epid_allocator::sptr _epid_alloc = std::make_shared<epid_allocator>();
//! Reference to a packet factory object. Gets initialized just before the GSM
std::unique_ptr<chdr::chdr_packet_factory> _pkt_factory;
//! Reference to RX streamers
std::vector<rx_streamer::sptr> _rx_streamers;
//! Reference to TX streamers
std::vector<tx_streamer::sptr> _tx_streamers;
}; /* class rfnoc_graph_impl */
/******************************************************************************
* Factory
*****************************************************************************/
namespace uhd { namespace rfnoc { namespace detail {
// Simple factory: If we already have the device, simply pass it on
rfnoc_graph::sptr make_rfnoc_graph(
detail::rfnoc_device::sptr dev, const uhd::device_addr_t& device_addr)
{
return std::make_shared<rfnoc_graph_impl>(dev, device_addr);
}
}}} /* namespace uhd::rfnoc::detail */
// If we don't have a device yet, create it and see if it's really an RFNoC
// device. This is used by multi_usrp_rfnoc, for example.
rfnoc_graph::sptr rfnoc_graph::make(const uhd::device_addr_t& device_addr)
{
auto dev =
std::dynamic_pointer_cast<detail::rfnoc_device>(uhd::device::make(device_addr));
if (!dev) {
throw uhd::key_error(std::string("No RFNoC devices found for ----->\n")
+ device_addr.to_pp_string());
}
return std::make_shared<rfnoc_graph_impl>(dev, device_addr);
}
|