1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/exception.hpp>
#include <uhd/rfnoc/node.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/prop_accessor.hpp>
#include <boost/format.hpp>
#include <algorithm>
#include <iostream>
using namespace uhd::rfnoc;
dirtifier_t node_t::ALWAYS_DIRTY{};
node_t::node_t()
{
register_property(&ALWAYS_DIRTY);
}
std::string node_t::get_unique_id() const
{
// TODO return something better
return str(boost::format("%08X") % this);
}
std::vector<std::string> node_t::get_property_ids() const
{
std::lock_guard<std::mutex> _l(_prop_mutex);
if (_props.count(res_source_info::USER) == 0) {
return {};
}
auto& user_props = _props.at(res_source_info::USER);
// TODO use a range here, we're not savages
std::vector<std::string> return_value(user_props.size());
for (size_t i = 0; i < user_props.size(); ++i) {
return_value[i] = user_props[i]->get_id();
}
return return_value;
}
void node_t::set_command_time(uhd::time_spec_t time, const size_t instance)
{
if (_cmd_timespecs.size() <= instance) {
_cmd_timespecs.resize(instance + 1, uhd::time_spec_t(0.0));
}
_cmd_timespecs[instance] = time;
}
uhd::time_spec_t node_t::get_command_time(const size_t instance) const
{
if (instance >= _cmd_timespecs.size()) {
return uhd::time_spec_t::ASAP;
}
return _cmd_timespecs.at(instance);
}
void node_t::clear_command_time(const size_t instance)
{
set_command_time(uhd::time_spec_t(0.0), instance);
}
/*** Protected methods *******************************************************/
void node_t::register_property(property_base_t* prop, resolve_callback_t&& clean_callback)
{
std::lock_guard<std::mutex> _l(_prop_mutex);
const auto src_type = prop->get_src_info().type;
auto prop_already_registered = [prop](const property_base_t* existing_prop) {
return (prop->get_src_info() == existing_prop->get_src_info()
&& prop->get_id() == existing_prop->get_id())
|| (prop == existing_prop);
};
// If the map is empty for this source type, create an empty vector
if (_props.count(src_type) == 0) {
_props[src_type] = {};
}
// Now go and make sure no one has registered this property before
auto& props = _props[src_type];
for (const auto& existing_prop : props) {
if (prop_already_registered(existing_prop)) {
throw uhd::runtime_error("Attempting to double-register prop");
}
}
_props[src_type].push_back(prop);
if (clean_callback) {
_clean_cb_registry[prop] = std::move(clean_callback);
}
}
void node_t::add_property_resolver(
prop_ptrs_t&& inputs, prop_ptrs_t&& outputs, resolver_fn_t&& resolver_fn)
{
std::lock_guard<std::mutex> _l(_prop_mutex);
// Sanity check: All inputs and outputs must be registered properties
auto prop_is_registered = [this](property_base_t* prop) -> bool {
return bool(this->_find_property(prop->get_src_info(), prop->get_id()));
};
for (const auto& prop : inputs) {
if (!prop_is_registered(prop)) {
throw uhd::runtime_error(
std::string("Cannot add property resolver, input property ")
+ prop->get_id() + " is not registered!");
}
}
for (const auto& prop : outputs) {
if (!prop_is_registered(prop)) {
throw uhd::runtime_error(
std::string("Cannot add property resolver, output property ")
+ prop->get_id() + " is not registered!");
}
}
// All good, we can store it
_prop_resolvers.push_back(std::make_tuple(std::forward<prop_ptrs_t>(inputs),
std::forward<prop_ptrs_t>(outputs),
std::forward<resolver_fn_t>(resolver_fn)));
}
void node_t::set_prop_forwarding_policy(
forwarding_policy_t policy, const std::string& prop_id)
{
_prop_fwd_policies[prop_id] = policy;
}
void node_t::register_action_handler(const std::string& id, action_handler_t&& handler)
{
if (_action_handlers.count(id)) {
_action_handlers.erase(id);
}
_action_handlers.emplace(id, std::move(handler));
}
void node_t::set_action_forwarding_policy(
node_t::forwarding_policy_t policy, const std::string& action_key)
{
_action_fwd_policies[action_key] = policy;
}
void node_t::post_action(
const res_source_info& edge_info,
action_info::sptr action)
{
_post_action_cb(edge_info, action);
}
/*** Private methods *********************************************************/
property_base_t* node_t::_find_property(
res_source_info src_info, const std::string& id) const
{
for (const auto& type_prop_pair : _props) {
if (type_prop_pair.first != src_info.type) {
continue;
}
for (const auto& prop : type_prop_pair.second) {
if (prop->get_id() == id && prop->get_src_info() == src_info) {
return prop;
}
}
}
return nullptr;
}
uhd::utils::scope_exit::uptr node_t::_request_property_access(
property_base_t* prop, property_base_t::access_t access) const
{
return prop_accessor_t{}.get_scoped_prop_access(*prop, access);
}
property_base_t* node_t::inject_edge_property(
property_base_t* blueprint, res_source_info new_src_info)
{
// Check if a property already exists which matches the new property
// requirements. If so, we can return early:
auto new_prop = _find_property(new_src_info, blueprint->get_id());
if (new_prop) {
return new_prop;
}
// We need to create a new property and stash it away:
new_prop = [&]() -> property_base_t* {
auto prop = blueprint->clone(new_src_info);
auto ptr = prop.get();
_dynamic_props.emplace(std::move(prop));
return ptr;
}();
register_property(new_prop);
// Collect some info on how to do the forwarding:
const auto fwd_policy = [&](const std::string& id) {
if (_prop_fwd_policies.count(id)) {
return _prop_fwd_policies.at(id);
}
return _prop_fwd_policies.at("");
}(new_prop->get_id());
const size_t port_idx = new_prop->get_src_info().instance;
const auto port_type = new_prop->get_src_info().type;
UHD_ASSERT_THROW(port_type == res_source_info::INPUT_EDGE
|| port_type == res_source_info::OUTPUT_EDGE);
// Now comes the hard part: Figure out which other properties need to be
// created, and which resolvers need to be instantiated
if (fwd_policy == forwarding_policy_t::ONE_TO_ONE) {
// Figure out if there's an opposite port
const auto opposite_port_type = res_source_info::invert_edge(port_type);
if (_has_port({opposite_port_type, port_idx})) {
// Make sure that the other side's property exists:
// This is a safe recursion, because we've already created and
// registered this property.
auto opposite_prop =
inject_edge_property(new_prop, {opposite_port_type, port_idx});
// Now add a resolver that will always forward the value from this
// property to the other one.
add_property_resolver(
{new_prop}, {opposite_prop}, [new_prop, opposite_prop]() {
prop_accessor_t{}.forward<false>(new_prop, opposite_prop);
});
}
}
if (fwd_policy == forwarding_policy_t::ONE_TO_FAN) {
const auto opposite_port_type = res_source_info::invert_edge(port_type);
const size_t num_ports = opposite_port_type == res_source_info::INPUT_EDGE
? get_num_input_ports()
: get_num_output_ports();
for (size_t i = 0; i < num_ports; i++) {
auto opposite_prop =
inject_edge_property(new_prop, {opposite_port_type, i});
// Now add a resolver that will always forward the value from this
// property to the other one.
add_property_resolver(
{new_prop}, {opposite_prop}, [new_prop, opposite_prop]() {
prop_accessor_t{}.forward<false>(new_prop, opposite_prop);
});
}
}
if (fwd_policy == forwarding_policy_t::ONE_TO_ALL
|| fwd_policy == forwarding_policy_t::ONE_TO_ALL_IN) {
// Loop through all other ports, make sure those properties exist
for (size_t other_port_idx = 0; other_port_idx < get_num_input_ports();
other_port_idx++) {
if (port_type == res_source_info::INPUT_EDGE && other_port_idx == port_idx) {
continue;
}
inject_edge_property(new_prop, {res_source_info::INPUT_EDGE, other_port_idx});
}
// Now add a dynamic resolver that will update all input properties.
// In order to keep this code simple, we bypass the write list and
// get access via the prop_accessor.
add_property_resolver({new_prop}, {/* empty */}, [this, new_prop, port_idx]() {
for (size_t other_port_idx = 0; other_port_idx < get_num_input_ports();
other_port_idx++) {
if (other_port_idx == port_idx) {
continue;
}
auto prop =
_find_property({res_source_info::INPUT_EDGE, other_port_idx},
new_prop->get_id());
if (prop) {
prop_accessor_t{}.forward<false>(new_prop, prop);
}
}
});
}
if (fwd_policy == forwarding_policy_t::ONE_TO_ALL
|| fwd_policy == forwarding_policy_t::ONE_TO_ALL_OUT) {
// Loop through all other ports, make sure those properties exist
for (size_t other_port_idx = 0; other_port_idx < get_num_output_ports();
other_port_idx++) {
if (port_type == res_source_info::OUTPUT_EDGE && other_port_idx == port_idx) {
continue;
}
inject_edge_property(new_prop, {res_source_info::OUTPUT_EDGE, other_port_idx});
}
// Now add a dynamic resolver that will update all input properties.
// In order to keep this code simple, we bypass the write list and
// get access via the prop_accessor.
add_property_resolver({new_prop}, {/* empty */}, [this, new_prop, port_idx]() {
for (size_t other_port_idx = 0; other_port_idx < get_num_input_ports();
other_port_idx++) {
if (other_port_idx == port_idx) {
continue;
}
auto prop =
_find_property({res_source_info::OUTPUT_EDGE, other_port_idx},
new_prop->get_id());
if (prop) {
prop_accessor_t{}.forward<false>(new_prop, prop);
}
}
});
}
return new_prop;
}
void node_t::init_props()
{
std::lock_guard<std::mutex> _l(_prop_mutex);
prop_accessor_t prop_accessor{};
for (auto& resolver_tuple : _prop_resolvers) {
// 1) Set all outputs to RWLOCKED
auto& outputs = std::get<1>(resolver_tuple);
for (auto& output : outputs) {
prop_accessor.set_access(output, property_base_t::RWLOCKED);
}
// 2) Run the resolver
try {
std::get<2>(resolver_tuple)();
} catch (const uhd::resolve_error& ex) {
UHD_LOGGER_WARNING(get_unique_id())
<< "Failed to initialize node. Most likely cause: Inconsistent default "
"values. Resolver threw this error: "
<< ex.what();
//throw uhd::runtime_error(std::string("Failed to initialize node ") + get_unique_id());
}
// 3) Set outputs back to RO
for (auto& output : outputs) {
prop_accessor.set_access(output, property_base_t::RO);
}
}
// 4) Mark properties as clean
clean_props();
}
void node_t::resolve_props()
{
prop_accessor_t prop_accessor{};
const prop_ptrs_t dirty_props =
filter_props([](property_base_t* prop) { return prop->is_dirty(); });
prop_ptrs_t written_props{};
UHD_LOG_TRACE(get_unique_id(),
"Locally resolving " << dirty_props.size() << " dirty properties.");
// Helper to determine if any element from inputs is in dirty_props
auto in_dirty_props = [&dirty_props](const prop_ptrs_t inputs) {
return std::any_of(
inputs.cbegin(), inputs.cend(), [&dirty_props](property_base_t* prop) {
return dirty_props.count(prop) != 1;
});
};
for (auto& resolver_tuple : _prop_resolvers) {
auto& inputs = std::get<0>(resolver_tuple);
auto& outputs = std::get<1>(resolver_tuple);
if (in_dirty_props(inputs)) {
continue;
}
// Enable outputs
std::vector<uhd::utils::scope_exit::uptr> access_holder;
access_holder.reserve(outputs.size());
for (auto& output : outputs) {
access_holder.emplace_back(prop_accessor.get_scoped_prop_access(*output,
written_props.count(output) ? property_base_t::access_t::RWLOCKED
: property_base_t::access_t::RW));
}
// Run resolver
std::get<2>(resolver_tuple)();
// Take note of outputs
written_props.insert(outputs.cbegin(), outputs.cend());
// RW or RWLOCKED gets released here as access_holder goes out of scope.
}
}
void node_t::resolve_all()
{
_resolve_all_cb();
}
void node_t::clean_props()
{
prop_accessor_t prop_accessor{};
for (const auto& type_prop_pair : _props) {
for (const auto& prop : type_prop_pair.second) {
if (prop->is_dirty() && _clean_cb_registry.count(prop)) {
_clean_cb_registry.at(prop)();
}
prop_accessor.mark_clean(*prop);
}
}
}
void node_t::forward_edge_property(
property_base_t* incoming_prop, const size_t incoming_port)
{
UHD_ASSERT_THROW(
incoming_prop->get_src_info().type == res_source_info::INPUT_EDGE
|| incoming_prop->get_src_info().type == res_source_info::OUTPUT_EDGE);
UHD_LOG_TRACE(get_unique_id(),
"Incoming edge property: `" << incoming_prop->get_id() << "`, source info: "
<< incoming_prop->get_src_info().to_string());
// The source type of my local prop (it's the opposite of the source type
// of incoming_prop)
const auto prop_src_type =
res_source_info::invert_edge(incoming_prop->get_src_info().type);
// Set of local properties that match incoming_prop. It can be an empty set,
// or, if the node is misconfigured, a set with more than one entry. Or, if
// all is as expected, it's a set with a single entry.
auto local_prop_set = filter_props([prop_src_type, incoming_prop, incoming_port](
property_base_t* prop) -> bool {
return prop->get_src_info().type == prop_src_type
&& prop->get_src_info().instance == incoming_port
&& prop->get_id() == incoming_prop->get_id();
});
// If there is no such property, we're forwarding a new property
if (local_prop_set.empty()) {
UHD_LOG_TRACE(get_unique_id(),
"Received unknown incoming edge prop: " << incoming_prop->get_id());
local_prop_set.emplace(
inject_edge_property(incoming_prop, {prop_src_type, incoming_port}));
}
// There must be either zero results, or one
UHD_ASSERT_THROW(local_prop_set.size() == 1);
auto local_prop = *local_prop_set.begin();
prop_accessor_t prop_accessor{};
prop_accessor.forward<false>(incoming_prop, local_prop);
}
void node_t::receive_action(const res_source_info& src_info, action_info::sptr action)
{
std::lock_guard<std::mutex> l(_action_mutex);
// See if the user defined an action handler for us:
if (_action_handlers.count(action->key)) {
_action_handlers.at(action->key)(src_info, action);
return;
}
// Otherwise, we need to figure out the correct default action handling:
const auto fwd_policy = [&](const std::string& id) {
if (_action_fwd_policies.count(id)) {
return _action_fwd_policies.at(id);
}
return _action_fwd_policies.at("");
}(action->key);
// Now implement custom forwarding for all forwarding policies:
if (fwd_policy == forwarding_policy_t::DROP) {
UHD_LOG_TRACE(
get_unique_id(), "Dropping action " << action->key);
}
if (fwd_policy == forwarding_policy_t::ONE_TO_ONE) {
UHD_LOG_TRACE(
get_unique_id(), "Forwarding action " << action->key << " to opposite port");
const res_source_info dst_info{
res_source_info::invert_edge(src_info.type), src_info.instance};
if (_has_port(dst_info)) {
post_action(dst_info, action);
}
}
if (fwd_policy == forwarding_policy_t::ONE_TO_FAN) {
UHD_LOG_TRACE(get_unique_id(),
"Forwarding action " << action->key << " to all opposite ports");
const auto new_edge_type = res_source_info::invert_edge(src_info.type);
const size_t num_ports = new_edge_type == res_source_info::INPUT_EDGE
? get_num_input_ports()
: get_num_output_ports();
for (size_t i = 0; i < num_ports; i++) {
post_action({new_edge_type, i}, action);
}
}
if (fwd_policy == forwarding_policy_t::ONE_TO_ALL
|| fwd_policy == forwarding_policy_t::ONE_TO_ALL_IN) {
UHD_LOG_TRACE(get_unique_id(),
"Forwarding action " << action->key << " to all input ports");
for (size_t i = 0; i < get_num_input_ports(); i++) {
if (src_info.type == res_source_info::INPUT_EDGE && i == src_info.instance) {
continue;
}
post_action({res_source_info::INPUT_EDGE, i}, action);
}
}
if (fwd_policy == forwarding_policy_t::ONE_TO_ALL
|| fwd_policy == forwarding_policy_t::ONE_TO_ALL_OUT) {
UHD_LOG_TRACE(get_unique_id(),
"Forwarding action " << action->key << " to all output ports");
for (size_t i = 0; i < get_num_output_ports(); i++) {
if (src_info.type == res_source_info::OUTPUT_EDGE && i == src_info.instance) {
continue;
}
post_action({res_source_info::OUTPUT_EDGE, i}, action);
}
}
}
bool node_t::_has_port(const res_source_info& port_info) const
{
return (port_info.type == res_source_info::INPUT_EDGE
&& port_info.instance <= get_num_input_ports())
|| (port_info.type == res_source_info::OUTPUT_EDGE
&& port_info.instance <= get_num_output_ports());
}
|