1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#pragma once
#include <uhd/config.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/utils/noncopyable.hpp>
#include <uhdlib/experts/expert_container.hpp>
#include <functional>
#include <memory>
namespace uhd { namespace experts {
/*!
* expert_factory is a friend of expert_container and
* handles all operations to create and change the structure of
* the an expert container.
* The expert_factory allocates storage for the nodes in the
* expert_container and passes allocated objects to the container
* using private APIs. The expert_container instance owns all
* data and workernodes and is responsible for releasing their
* storage on destruction.
*
*/
class UHD_API expert_factory : public uhd::noncopyable
{
public:
/*!
* Creates an empty instance of expert_container with the
* specified name.
*
* \param name Name of the container
*/
static expert_container::sptr create_container(const std::string& name);
/*!
* Add a data node to the expert graph.
*
* \param container A shared pointer to the container to add the node to
* \param name The name of the data node
* \param init_val The initial value of the data node
* \param mode The auto resolve mode
*
* Requirements for data_t
* - Must have a default constructor
* - Must have a copy constructor
* - Must have an assignment operator (=)
* - Must have an equality operator (==)
*/
template <typename data_t>
inline static void add_data_node(expert_container::sptr container,
const std::string& name,
const data_t& init_val,
const auto_resolve_mode_t mode = AUTO_RESOLVE_OFF)
{
container->add_data_node(new data_node_t<data_t>(name, init_val), mode);
}
/*!
* Add a expert property to a property tree AND an expert graph
*
* The underlying property can be used like any other property tree property,
* including setting a coercer through set_coercer(). However, this means
* that the coercion is happening outside of the expert framework. This is
* primarily useful for tiny coercions (e.g., we accept both upper and lower
* case values, but only want lower case downstream) for which we don't want
* to bother with a full expert, or for which we don't want to trigger
* resolution at all (if mode is set to AUTO_RESOLVE_OFF).
* For more full-fledged coercion, prefer add_dual_prop_node(). This will
* properly engage the expert graph.
*
* \param container A shared pointer to the expert container to add the node to
* \param subtree A shared pointer to subtree to add the property to
* \param path The path of the property in the subtree
* \param name The name of the data node in the expert graph
* \param init_val The initial value of the data node
* \param mode The auto resolve mode
*
* Requirements for data_t
* - Must have a default constructor
* - Must have a copy constructor
* - Must have an assignment operator (=)
* - Must have an equality operator (==)
*/
template <typename data_t>
inline static property<data_t>& add_prop_node(expert_container::sptr container,
property_tree::sptr subtree,
const fs_path& path,
const std::string& name,
const data_t& init_val,
const auto_resolve_mode_t mode = AUTO_RESOLVE_OFF)
{
property<data_t>& prop =
subtree->create<data_t>(path, property_tree::AUTO_COERCE);
data_node_t<data_t>* node_ptr =
new data_node_t<data_t>(name, init_val, &container->resolve_mutex());
prop.set(init_val);
prop.add_coerced_subscriber(
std::bind(&data_node_t<data_t>::commit, node_ptr, std::placeholders::_1));
prop.set_publisher(std::bind(&data_node_t<data_t>::retrieve, node_ptr));
container->add_data_node(node_ptr, mode);
return prop;
}
/*!
* Add a expert property to a property tree AND an expert graph.
* The property is registered with the path as the identifier for
* both the property subtree and the expert container
*
* \param container A shared pointer to the expert container to add the node to
* \param subtree A shared pointer to subtree to add the property to
* \param path The path of the property in the subtree
* \param init_val The initial value of the data node
* \param mode The auto resolve mode
*
*/
template <typename data_t>
inline static property<data_t>& add_prop_node(expert_container::sptr container,
property_tree::sptr subtree,
const fs_path& path,
const data_t& init_val,
const auto_resolve_mode_t mode = AUTO_RESOLVE_OFF)
{
return add_prop_node(container, subtree, path, path, init_val, mode);
}
/*!
* Add a dual expert property to a property tree AND an expert graph.
* A dual property is a desired and coerced value pair
*
* \param container A shared pointer to the expert container to add the node to
* \param subtree A shared pointer to subtree to add the property to
* \param path The path of the property in the subtree
* \param desired_name The name of the desired data node in the expert graph
* \param desired_name The name of the coerced data node in the expert graph
* \param init_val The initial value of both the data nodes
* \param mode The auto resolve mode
*
* Requirements for data_t
* - Must have a default constructor
* - Must have a copy constructor
* - Must have an assignment operator (=)
* - Must have an equality operator (==)
*/
template <typename data_t>
inline static property<data_t>& add_dual_prop_node(expert_container::sptr container,
property_tree::sptr subtree,
const fs_path& path,
const std::string& desired_name,
const std::string& coerced_name,
const data_t& init_val,
const auto_resolve_mode_t mode = AUTO_RESOLVE_OFF)
{
bool auto_resolve_desired =
(mode == AUTO_RESOLVE_ON_WRITE or mode == AUTO_RESOLVE_ON_READ_WRITE);
bool auto_resolve_coerced =
(mode == AUTO_RESOLVE_ON_READ or mode == AUTO_RESOLVE_ON_READ_WRITE);
property<data_t>& prop =
subtree->create<data_t>(path, property_tree::MANUAL_COERCE);
data_node_t<data_t>* desired_node_ptr =
new data_node_t<data_t>(desired_name, init_val, &container->resolve_mutex());
data_node_t<data_t>* coerced_node_ptr =
new data_node_t<data_t>(coerced_name, init_val, &container->resolve_mutex());
prop.set(init_val);
prop.set_coerced(init_val);
prop.add_desired_subscriber(std::bind(
&data_node_t<data_t>::commit, desired_node_ptr, std::placeholders::_1));
prop.set_publisher(std::bind(&data_node_t<data_t>::retrieve, coerced_node_ptr));
container->add_data_node(desired_node_ptr,
auto_resolve_desired ? AUTO_RESOLVE_ON_WRITE : AUTO_RESOLVE_OFF);
container->add_data_node(coerced_node_ptr,
auto_resolve_coerced ? AUTO_RESOLVE_ON_READ : AUTO_RESOLVE_OFF);
return prop;
}
/*!
* Add a dual expert property to a property tree AND an expert graph.
* A dual property is a desired and coerced value pair
* The property is registered with path/desired as the desired node
* name and path/coerced as the coerced node name
*
* \param container A shared pointer to the expert container to add the node to
* \param subtree A shared pointer to subtree to add the property to
* \param path The path of the property in the subtree
* \param init_val The initial value of both the data nodes
* \param mode The auto resolve mode
*
*/
template <typename data_t>
inline static property<data_t>& add_dual_prop_node(expert_container::sptr container,
property_tree::sptr subtree,
const fs_path& path,
const data_t& init_val,
const auto_resolve_mode_t mode = AUTO_RESOLVE_OFF)
{
return add_dual_prop_node(container,
subtree,
path,
path + "/desired",
path + "/coerced",
init_val,
mode);
}
/*!
* Add a worker node to the expert graph.
* The expert_container owns and manages storage for the worker
*
* \tparam worker_t Data type of the worker class
*
* \param container A shared pointer to the container to add the node to
*
*/
template <typename worker_t>
inline static void add_worker_node(expert_container::sptr container)
{
container->add_worker(new worker_t());
}
/*!
* Add a worker node to the expert graph.
* The expert_container owns and manages storage for the worker
*
* \tparam worker_t Data type of the worker class
* \tparam arg1_t Data type of the first argument to the constructor
* \tparam ...
* \tparam argN_t Data type of the Nth argument to the constructor
*
* \param container A shared pointer to the container to add the node to
* \param arg1 First arg to ctor
* \param ...
* \param argN Nth arg to ctor
*
*/
template <typename worker_t, typename arg1_t>
inline static void add_worker_node(
expert_container::sptr container, arg1_t const& arg1)
{
container->add_worker(new worker_t(arg1));
}
template <typename worker_t, typename arg1_t, typename arg2_t>
inline static void add_worker_node(
expert_container::sptr container, arg1_t const& arg1, arg2_t const& arg2)
{
container->add_worker(new worker_t(arg1, arg2));
}
template <typename worker_t, typename arg1_t, typename arg2_t, typename arg3_t>
inline static void add_worker_node(expert_container::sptr container,
arg1_t const& arg1,
arg2_t const& arg2,
arg3_t const& arg3)
{
container->add_worker(new worker_t(arg1, arg2, arg3));
}
template <typename worker_t,
typename arg1_t,
typename arg2_t,
typename arg3_t,
typename arg4_t>
inline static void add_worker_node(expert_container::sptr container,
arg1_t const& arg1,
arg2_t const& arg2,
arg3_t const& arg3,
arg4_t const& arg4)
{
container->add_worker(new worker_t(arg1, arg2, arg3, arg4));
}
template <typename worker_t,
typename arg1_t,
typename arg2_t,
typename arg3_t,
typename arg4_t,
typename arg5_t>
inline static void add_worker_node(expert_container::sptr container,
arg1_t const& arg1,
arg2_t const& arg2,
arg3_t const& arg3,
arg4_t const& arg4,
arg5_t const& arg5)
{
container->add_worker(new worker_t(arg1, arg2, arg3, arg4, arg5));
}
template <typename worker_t,
typename arg1_t,
typename arg2_t,
typename arg3_t,
typename arg4_t,
typename arg5_t,
typename arg6_t>
inline static void add_worker_node(expert_container::sptr container,
arg1_t const& arg1,
arg2_t const& arg2,
arg3_t const& arg3,
arg4_t const& arg4,
arg5_t const& arg5,
arg6_t const& arg6)
{
container->add_worker(new worker_t(arg1, arg2, arg3, arg4, arg5, arg6));
}
template <typename worker_t,
typename arg1_t,
typename arg2_t,
typename arg3_t,
typename arg4_t,
typename arg5_t,
typename arg6_t,
typename arg7_t>
inline static void add_worker_node(expert_container::sptr container,
arg1_t const& arg1,
arg2_t const& arg2,
arg3_t const& arg3,
arg4_t const& arg4,
arg5_t const& arg5,
arg6_t const& arg6,
arg7_t const& arg7)
{
container->add_worker(new worker_t(arg1, arg2, arg3, arg4, arg5, arg6, arg7));
}
template <typename worker_t,
typename arg1_t,
typename arg2_t,
typename arg3_t,
typename arg4_t,
typename arg5_t,
typename arg6_t,
typename arg7_t,
typename arg8_t>
inline static void add_worker_node(expert_container::sptr container,
arg1_t const& arg1,
arg2_t const& arg2,
arg3_t const& arg3,
arg4_t const& arg4,
arg5_t const& arg5,
arg6_t const& arg6,
arg7_t const& arg7,
arg7_t const& arg8)
{
container->add_worker(
new worker_t(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8));
}
};
}} // namespace uhd::experts
|