1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
//
// Copyright 2012-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <emmintrin.h>
using namespace uhd::convert;
template <const int shuf>
UHD_INLINE __m128i pack_sc32_4x(const __m128& in0,
const __m128& in1,
const __m128& in2,
const __m128& in3,
const __m128& scalar)
{
__m128i tmpi0 = _mm_cvtps_epi32(_mm_mul_ps(in0, scalar));
tmpi0 = _mm_shuffle_epi32(tmpi0, shuf);
__m128i tmpi1 = _mm_cvtps_epi32(_mm_mul_ps(in1, scalar));
tmpi1 = _mm_shuffle_epi32(tmpi1, shuf);
const __m128i lo = _mm_packs_epi32(tmpi0, tmpi1);
__m128i tmpi2 = _mm_cvtps_epi32(_mm_mul_ps(in2, scalar));
tmpi2 = _mm_shuffle_epi32(tmpi2, shuf);
__m128i tmpi3 = _mm_cvtps_epi32(_mm_mul_ps(in3, scalar));
tmpi3 = _mm_shuffle_epi32(tmpi3, shuf);
const __m128i hi = _mm_packs_epi32(tmpi2, tmpi3);
return _mm_packs_epi16(lo, hi);
}
DECLARE_CONVERTER(fc32, 1, sc8_item32_be, 1, PRIORITY_SIMD)
{
const fc32_t* input = reinterpret_cast<const fc32_t*>(inputs[0]);
item32_t* output = reinterpret_cast<item32_t*>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor));
const int shuf = _MM_SHUFFLE(3, 2, 1, 0);
#define convert_fc32_1_to_sc8_item32_1_bswap_guts(_al_) \
for (size_t j = 0; i + 7 < nsamps; i += 8, j += 4) { \
/* load from input */ \
__m128 tmp0 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 0)); \
__m128 tmp1 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 2)); \
__m128 tmp2 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 4)); \
__m128 tmp3 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 6)); \
\
/* convert */ \
const __m128i tmpi = pack_sc32_4x<shuf>(tmp0, tmp1, tmp2, tmp3, scalar); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i*>(output + j), tmpi); \
}
size_t i = 0;
// dispatch according to alignment
if ((size_t(input) & 0xf) == 0) {
convert_fc32_1_to_sc8_item32_1_bswap_guts(_)
} else {
convert_fc32_1_to_sc8_item32_1_bswap_guts(u_)
}
// convert remainder
xx_to_item32_sc8<uhd::htonx>(input + i, output + (i / 2), nsamps - i, scale_factor);
}
DECLARE_CONVERTER(fc32, 1, sc8_item32_le, 1, PRIORITY_SIMD)
{
const fc32_t* input = reinterpret_cast<const fc32_t*>(inputs[0]);
item32_t* output = reinterpret_cast<item32_t*>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor));
const int shuf = _MM_SHUFFLE(0, 1, 2, 3);
#define convert_fc32_1_to_sc8_item32_1_nswap_guts(_al_) \
for (size_t j = 0; i + 7 < nsamps; i += 8, j += 4) { \
/* load from input */ \
__m128 tmp0 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 0)); \
__m128 tmp1 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 2)); \
__m128 tmp2 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 4)); \
__m128 tmp3 = _mm_load##_al_##ps(reinterpret_cast<const float*>(input + i + 6)); \
\
/* convert */ \
const __m128i tmpi = pack_sc32_4x<shuf>(tmp0, tmp1, tmp2, tmp3, scalar); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i*>(output + j), tmpi); \
}
size_t i = 0;
// dispatch according to alignment
if ((size_t(input) & 0xf) == 0) {
convert_fc32_1_to_sc8_item32_1_nswap_guts(_)
} else {
convert_fc32_1_to_sc8_item32_1_nswap_guts(u_)
}
// convert remainder
xx_to_item32_sc8<uhd::htowx>(input + i, output + (i / 2), nsamps - i, scale_factor);
}
|