1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
//
// Copyright 2011-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#ifndef INCLUDED_LIBUHD_CONVERT_COMMON_HPP
#define INCLUDED_LIBUHD_CONVERT_COMMON_HPP
#include <uhd/convert.hpp>
#include <uhd/utils/static.hpp>
#include <stdint.h>
#include <complex>
#define _DECLARE_CONVERTER(name, in_form, num_in, out_form, num_out, prio) \
struct name : public uhd::convert::converter{ \
static sptr make(void){return sptr(new name());} \
double scale_factor; \
void set_scalar(const double s){scale_factor = s;} \
void operator()(const input_type&, const output_type&, const size_t); \
}; \
UHD_STATIC_BLOCK(__register_##name##_##prio){ \
uhd::convert::id_type id; \
id.input_format = #in_form; \
id.num_inputs = num_in; \
id.output_format = #out_form; \
id.num_outputs = num_out; \
uhd::convert::register_converter(id, &name::make, prio); \
} \
void name::operator()( \
const input_type &inputs, const output_type &outputs, const size_t nsamps \
)
/*! Convenience macro to declare a single-function converter
*
* Most converters consist of a single for loop, and can make use of
* this macro for declaration and registering.
*
* Following this macro should be a function block in curly braces
* which runs the conversion. Available parameters in this function block
* are:
* - `inputs`: Vector of pointers to the input data. Size of the vector == `num_in`
* - `outputs`: Vector of pointers to where the output data goes. Size of the vector == `num_out`
* - `nsamps`: Number of items per input buffer to convert
* - `scale_factor`: Scaling factor for float conversions
*/
#define DECLARE_CONVERTER(in_form, num_in, out_form, num_out, prio) \
_DECLARE_CONVERTER(__convert_##in_form##_##num_in##_##out_form##_##num_out##_##prio, in_form, num_in, out_form, num_out, prio)
/***********************************************************************
* Setup priorities
**********************************************************************/
static const int PRIORITY_GENERAL = 0;
static const int PRIORITY_EMPTY = -1;
#ifdef __ARM_NEON__
static const int PRIORITY_SIMD = 2;
static const int PRIORITY_TABLE = 1; //tables require large cache, so they are slower on arm
#else
// We used to have ORC, too, so SIMD is 3
static const int PRIORITY_SIMD = 3;
static const int PRIORITY_TABLE = 1;
#endif
/***********************************************************************
* Typedefs
**********************************************************************/
typedef std::complex<double> fc64_t;
typedef std::complex<float> fc32_t;
typedef std::complex<int32_t> sc32_t;
typedef std::complex<int16_t> sc16_t;
typedef std::complex<int8_t> sc8_t;
typedef double f64_t;
typedef float f32_t;
typedef int32_t s32_t;
typedef int16_t s16_t;
typedef int8_t s8_t;
typedef uint8_t u8_t;
typedef uint32_t item32_t;
typedef item32_t (*xtox_t)(item32_t);
/***********************************************************************
* Convert xx to items32 sc16 buffer
**********************************************************************/
template <typename T> UHD_INLINE item32_t xx_to_item32_sc16_x1(
const std::complex<T> &num, const double scale_factor
){
uint16_t real = int16_t(num.real()*float(scale_factor));
uint16_t imag = int16_t(num.imag()*float(scale_factor));
return (item32_t(real) << 16) | (item32_t(imag) << 0);
}
template <> UHD_INLINE item32_t xx_to_item32_sc16_x1(
const sc16_t &num, const double
){
uint16_t real = int16_t(num.real());
uint16_t imag = int16_t(num.imag());
return (item32_t(real) << 16) | (item32_t(imag) << 0);
}
template <xtox_t to_wire, typename T>
UHD_INLINE void xx_to_item32_sc16(
const std::complex<T> *input,
item32_t *output,
const size_t nsamps,
const double scale_factor
){
for (size_t i = 0; i < nsamps; i++){
const item32_t item = xx_to_item32_sc16_x1(input[i], scale_factor);
output[i] = to_wire(item);
}
}
/***********************************************************************
* Convert items32 sc16 buffer to xx
**********************************************************************/
template <typename T> UHD_INLINE std::complex<T> item32_sc16_x1_to_xx(
const item32_t item, const double scale_factor
){
return std::complex<T>(
T(int16_t(item >> 16)*float(scale_factor)),
T(int16_t(item >> 0)*float(scale_factor))
);
}
template <> UHD_INLINE sc16_t item32_sc16_x1_to_xx(
const item32_t item, const double
){
return sc16_t(
int16_t(item >> 16), int16_t(item >> 0)
);
}
template <xtox_t to_host, typename T>
UHD_INLINE void item32_sc16_to_xx(
const item32_t *input,
std::complex<T> *output,
const size_t nsamps,
const double scale_factor
){
for (size_t i = 0; i < nsamps; i++){
const item32_t item_i = to_host(input[i]);
output[i] = item32_sc16_x1_to_xx<T>(item_i, scale_factor);
}
}
/***********************************************************************
* Convert xx to items32 sc8 buffer
**********************************************************************/
template <typename T> UHD_INLINE item32_t xx_to_item32_sc8_x1(
const std::complex<T> &in0, const std::complex<T> &in1, const double scale_factor
){
uint8_t real1 = int8_t(in0.real()*float(scale_factor));
uint8_t imag1 = int8_t(in0.imag()*float(scale_factor));
uint8_t real0 = int8_t(in1.real()*float(scale_factor));
uint8_t imag0 = int8_t(in1.imag()*float(scale_factor));
return
(item32_t(real0) << 8) | (item32_t(imag0) << 0) |
(item32_t(real1) << 24) | (item32_t(imag1) << 16)
;
}
template <> UHD_INLINE item32_t xx_to_item32_sc8_x1(
const sc16_t &in0, const sc16_t &in1, const double
){
uint8_t real1 = int8_t(in0.real());
uint8_t imag1 = int8_t(in0.imag());
uint8_t real0 = int8_t(in1.real());
uint8_t imag0 = int8_t(in1.imag());
return
(item32_t(real0) << 8) | (item32_t(imag0) << 0) |
(item32_t(real1) << 24) | (item32_t(imag1) << 16)
;
}
template <> UHD_INLINE item32_t xx_to_item32_sc8_x1(
const sc8_t &in0, const sc8_t &in1, const double
){
uint8_t real1 = int8_t(in0.real());
uint8_t imag1 = int8_t(in0.imag());
uint8_t real0 = int8_t(in1.real());
uint8_t imag0 = int8_t(in1.imag());
return
(item32_t(real0) << 8) | (item32_t(imag0) << 0) |
(item32_t(real1) << 24) | (item32_t(imag1) << 16)
;
}
template <xtox_t to_wire, typename T>
UHD_INLINE void xx_to_item32_sc8(
const std::complex<T> *input,
item32_t *output,
const size_t nsamps,
const double scale_factor
){
const size_t num_pairs = nsamps/2;
for (size_t i = 0, j = 0; i < num_pairs; i++, j+=2){
const item32_t item = xx_to_item32_sc8_x1(input[j], input[j+1], scale_factor);
output[i] = to_wire(item);
}
if (nsamps != num_pairs*2){
const item32_t item = xx_to_item32_sc8_x1(input[nsamps-1], std::complex<T>(0), scale_factor);
output[num_pairs] = to_wire(item);
}
}
/***********************************************************************
* Convert items32 sc8 buffer to xx
**********************************************************************/
template <typename T> UHD_INLINE void item32_sc8_x1_to_xx(
const item32_t item, std::complex<T> &out0, std::complex<T> &out1, const double scale_factor
){
out1 = std::complex<T>(
T(int8_t(item >> 8)*float(scale_factor)),
T(int8_t(item >> 0)*float(scale_factor))
);
out0 = std::complex<T>(
T(int8_t(item >> 24)*float(scale_factor)),
T(int8_t(item >> 16)*float(scale_factor))
);
}
template <> UHD_INLINE void item32_sc8_x1_to_xx(
const item32_t item, sc16_t &out0, sc16_t &out1, const double
){
out1 = sc16_t(
int16_t(int8_t(item >> 8)),
int16_t(int8_t(item >> 0))
);
out0 = sc16_t(
int16_t(int8_t(item >> 24)),
int16_t(int8_t(item >> 16))
);
}
template <> UHD_INLINE void item32_sc8_x1_to_xx(
const item32_t item, sc8_t &out0, sc8_t &out1, const double
){
out1 = sc8_t(
int8_t(int8_t(item >> 8)),
int8_t(int8_t(item >> 0))
);
out0 = sc8_t(
int8_t(int8_t(item >> 24)),
int8_t(int8_t(item >> 16))
);
}
template <xtox_t to_host, typename T>
UHD_INLINE void item32_sc8_to_xx(
const item32_t *input,
std::complex<T> *output,
const size_t nsamps,
const double scale_factor
){
input = reinterpret_cast<const item32_t *>(size_t(input) & ~0x3);
std::complex<T> dummy;
size_t num_samps = nsamps;
if ((size_t(input) & 0x3) != 0){
const item32_t item0 = to_host(*input++);
item32_sc8_x1_to_xx(item0, dummy, *output++, scale_factor);
num_samps--;
}
const size_t num_pairs = num_samps/2;
for (size_t i = 0, j = 0; i < num_pairs; i++, j+=2){
const item32_t item_i = to_host(input[i]);
item32_sc8_x1_to_xx(item_i, output[j], output[j+1], scale_factor);
}
if (num_samps != num_pairs*2){
const item32_t item_n = to_host(input[num_pairs]);
item32_sc8_x1_to_xx(item_n, output[num_samps-1], dummy, scale_factor);
}
}
#endif /* INCLUDED_LIBUHD_CONVERT_COMMON_HPP */
|