1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
//
// Copyright 2010-2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
// Copyright 2019-2020 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <cmath>
#include <complex>
#include <stdexcept>
#include <string>
#include <vector>
#include <algorithm>
static const size_t wave_table_len = 8192;
class wave_table_class
{
public:
wave_table_class(const std::string& wave_type, const float ampl)
: _wave_table(wave_table_len, {0.0, 0.0})
{
// Note: CONST, SQUARE, and RAMP only fill the I portion, since they are
// amplitude-modulating signals, not phase-modulating.
if (wave_type == "CONST") {
// Fill with I == ampl, Q == 0
std::fill(
_wave_table.begin(), _wave_table.end(), std::complex<float>{ampl, 0.0});
_power_dbfs = static_cast<double>(20 * std::log10(ampl));
} else if (wave_type == "SQUARE") {
// Fill the second half of the table with ampl, first half with
// zeros
std::fill(_wave_table.begin() + wave_table_len / 2,
_wave_table.end(),
std::complex<float>{ampl, 0.0});
_power_dbfs = static_cast<double>(20 * std::log10(ampl))
- static_cast<double>(10 * std::log10(2.0));
} else if (wave_type == "RAMP") {
// Fill I values with ramp from -1 to 1, Q with zero
float energy_acc = 0.0f;
for (size_t i = 0; i < wave_table_len; i++) {
_wave_table[i] = {(2.0f * i / (wave_table_len - 1) - 1.0f) * ampl, 0.0};
energy_acc += std::norm(_wave_table[i]);
}
_power_dbfs = static_cast<double>(energy_acc / wave_table_len);
// Note: The closed-form solution to the average sum of squares of
// the ramp is:
// 1.0 / 3 + 2.0 / (3 * N) + 1.0 / (3 * N) + 4.0 / (6 * N^2))
// where N == wave_table_len, but it turns out be be less code if we
// just calculate the power on the fly.
} else if (wave_type == "SINE") {
static const double tau = 2 * std::acos(-1.0);
static const std::complex<float> J(0, 1);
// Careful: i is the loop counter, not the imaginary unit
for (size_t i = 0; i < wave_table_len; i++) {
// Directly generate complex sinusoid (a*e^{j 2\pi i/N}). We
// create a single rotation. The call site will sub-sample
// appropriately to create a sine wave of it's desired frequency
_wave_table[i] =
ampl * std::exp(J * static_cast<float>(tau * i / wave_table_len));
}
_power_dbfs = static_cast<double>(20 * std::log10(ampl));
} else {
throw std::runtime_error("unknown waveform type: " + wave_type);
}
}
inline std::complex<float> operator()(const size_t index) const
{
return _wave_table[index % wave_table_len];
}
//! Return the signal power in dBFS
inline double get_power() const
{
return _power_dbfs;
}
private:
std::vector<std::complex<float>> _wave_table;
double _power_dbfs;
};
|