aboutsummaryrefslogtreecommitdiffstats
path: root/host/examples/twinrx_freq_hopping.cpp
blob: 67a4d99f673067d48626e20b0d2cba8cec44e165 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//
// Copyright 2016 Ettus Research LLC
//
// SPDX-License-Identifier: GPL-3.0
//

// FFT conversion
#include "ascii_art_dft.hpp"

#include <uhd/utils/thread.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/multi_usrp.hpp>

#include <boost/program_options.hpp>
#include <boost/thread.hpp>

#include <fstream>

/*
 * This example shows how to implement fast frequency hopping using an X-Series
 * motherboard and a TwinRX daughterboard.
 *
 * The TwinRX daughterboard is different than previous daughterboards in that it has two
 * RX channels, each with a set of Local Oscillators (LOs). Either channel can be configured
 * to use either LO set, allowing for the two channels to share an LO source.
 *
 * The TwinRX can be used like any other daughterboard, as the multi_usrp::set_rx_freq()
 * function will automatically calculate and set the two LO frequencies as needed.
 * However, this adds to the overall tuning time. If the LO frequencies are manually set
 * with the multi_usrp::set_rx_lo_freq() function, the TwinRX will will not perform the
 * calculation itself, resulting in a faster tune time. This example shows how to take
 * advantage of this as follows:
 *
 * 1. Tune across the given frequency range, storing the calculated LO frequencies along
 *    the way.
 * 2. Use timed commands to tell the TwinRX to receive bursts of samples at given intervals.
 * 3. For each frequency, tune the LOs for the inactive channel for the next frequency and
 *    receive at the current frequency.
 * 4. If applicable, send the next timed command for streaming.
 */

namespace pt = boost::posix_time;
namespace po = boost::program_options;

typedef std::vector<std::complex<float> > recv_buff_t;
typedef std::vector<recv_buff_t> recv_buffs_t;

// Global objects
static uhd::usrp::multi_usrp::sptr usrp;
static uhd::rx_streamer::sptr rx_stream;
static recv_buffs_t buffs;
static size_t recv_spb, spb;

static std::vector<double> rf_freqs;

static uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);

double receive_interval;

// Define the active channel (connected to antenna) and the unused channel
size_t ACTIVE_CHAN = 0;
size_t UNUSED_CHAN = 1;

const int X300_COMMAND_FIFO_DEPTH = 16;


// This is a helper function for receiving samples from the USRP
static void twinrx_recv(recv_buff_t &buffer) {

    size_t num_acc_samps = 0;
    uhd::rx_metadata_t md;

    // Repeatedly retrieve samples until the entire acquisition is received
    while (num_acc_samps < spb) {
        size_t num_to_recv = std::min<size_t>(recv_spb, (spb - num_acc_samps));

        // recv call will block until samples are ready or the call times out
        size_t num_recvd = rx_stream->recv(&buffer[num_acc_samps], num_to_recv, md, receive_interval);

        if(md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
            std::cout << md.strerror() << std::endl;
            break;
        }
        num_acc_samps += num_recvd;
    }
}

// Function to write the acquisition FFT to a binary file
static void write_fft_to_file(const std::string &fft_path) {
    std::cout << "Calculating FFTs (this may take a while)... " << std::flush;
    std::ofstream ofile(fft_path.c_str(), std::ios::binary);
    BOOST_FOREACH(const recv_buff_t &buff, buffs) {
                    std::vector<float> fft = ascii_art_dft::log_pwr_dft(&buff.front(), buff.size());
                    ofile.write((char*)&fft[0], (sizeof(float)*fft.size()));
                }
    ofile.close();
    std::cout << "done." << std::endl;
}

int UHD_SAFE_MAIN(int argc, char *argv[]){
    uhd::set_thread_priority_safe();

    // Program options
    std::string args, fft_path, subdev, ant;
    double rate, gain;
    double start_freq, end_freq;

    // Set up the program options
    po::options_description desc("Allowed options");
    desc.add_options()
            ("help", "Print this help message")
            ("args", po::value<std::string>(&args)->default_value(""), "UHD device args")
            ("subdev", po::value<std::string>(&subdev)->default_value("A:0 A:1"), "Subdevice specification")
            ("ant", po::value<std::string>(&ant)->default_value("RX1"), "RX Antenna")
            ("start-freq", po::value<double>(&start_freq), "Start frequency (defaults to lowest valid frequency)")
            ("end-freq", po::value<double>(&end_freq), "End frequency (defaults to highest valid frequency)")
            ("receive-interval", po::value<double>(&receive_interval)->default_value(5e-3), "Interval between scheduled receives")
            ("rate", po::value<double>(&rate)->default_value(1e6), "Incoming sample rate")
            ("gain", po::value<double>(&gain)->default_value(60), "RX gain")
            ("spb", po::value<size_t>(&spb)->default_value(1024), "Samples per buffer")
            ("fft-path", po::value<std::string>(&fft_path), "Output an FFT to this file (optional)")
            ("repeat", "repeat sweep until Ctrl-C is pressed")
            ;
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    if(vm.count("help")) {
        std::cout << "TwinRX Frequency Hopping Example - " << desc << std::endl;
        return EXIT_SUCCESS;
    }

    // Create a USRP device
    std::cout << boost::format("\nCreating the USRP device with args: \"%s\"...\n") % args;
    usrp = uhd::usrp::multi_usrp::make(args);

    // Make sure the USRP is an X3xx with a TwinRX
    uhd::dict<std::string, std::string> info = usrp->get_usrp_rx_info();
    if(info.get("mboard_id").find("X3") == std::string::npos) {
        throw uhd::runtime_error("This example can only be used with an X-Series motherboard.");
    }
    if(info.get("rx_id").find("TwinRX") == std::string::npos) {
        throw uhd::runtime_error("This example can only be used with a TwinRX daughterboard.");
    }

    // Validate frequency range
    uhd::freq_range_t rx_freq_range = usrp->get_rx_freq_range();
    if (!vm.count("start-freq")) {
        start_freq = rx_freq_range.start();
    }
    if (!vm.count("end-freq")) {
        end_freq = rx_freq_range.stop();
    }
    if (start_freq < rx_freq_range.start() or end_freq > rx_freq_range.stop()) {
        throw uhd::runtime_error((boost::format("Start and stop frequencies must be between %d and %d MHz")
                                            % ((rx_freq_range.start() / 1e6), (rx_freq_range.stop() / 1e6))).str());
    }
    if (start_freq > end_freq) {
        throw uhd::runtime_error("Start frequency must be less than end frequency.");
    }
    if ((end_freq - start_freq) > 0 and (end_freq - start_freq) < rate) {
        throw uhd::runtime_error("The sample rate must be less than the range between the start and end frequencies.");
    }

    // Set TwinRX settings
    usrp->set_rx_subdev_spec(subdev);

    // Set the unused channel to not use any LOs. This allows the active channel to control them.
    usrp->set_rx_lo_source("disabled", uhd::usrp::multi_usrp::ALL_LOS, UNUSED_CHAN);

    // Set user settings
    std::cout << boost::format("Setting antenna to:     %s\n") % ant;
    usrp->set_rx_antenna(ant, ACTIVE_CHAN);
    std::cout << boost::format("Actual antenna:         %s\n") % usrp->get_rx_antenna(ACTIVE_CHAN);

    std::cout << boost::format("Setting sample rate to: %d\n") % rate;
    usrp->set_rx_rate(rate);
    std::cout << boost::format("Actual sample rate:     %d\n") % usrp->get_rx_rate();

    std::cout << boost::format("Setting gain to: %d\n") % gain;
    usrp->set_rx_gain(gain);
    std::cout << boost::format("Actual gain:     %d\n") % usrp->get_rx_gain();

    // Get an rx_streamer from the device
    uhd::stream_args_t stream_args("fc32", "sc16");
    stream_args.channels.push_back(0);
    rx_stream = usrp->get_rx_stream(stream_args);
    recv_spb = rx_stream->get_max_num_samps();

    // Calculate the frequency hops
    for (double rx_freq = start_freq; rx_freq <= end_freq; rx_freq += rate) {
        rf_freqs.push_back(rx_freq);
    }
    std::cout << boost::format("Total Hops: %d\n") % rf_freqs.size();

    // Set up buffers
    buffs = recv_buffs_t(rf_freqs.size(), recv_buff_t(spb));

    // Tune the active channel to the first frequency and reset the USRP's time
    usrp->set_rx_freq(rf_freqs[0], ACTIVE_CHAN);
    usrp->set_time_now(uhd::time_spec_t(0.0));

    // Configure the stream command which will be issued to acquire samples at each frequency
    stream_cmd.num_samps = spb;
    stream_cmd.stream_now = false;
    stream_cmd.time_spec = uhd::time_spec_t(0.0);

    // Stream commands will be scheduled at regular intervals
    uhd::time_spec_t receive_interval_ts = uhd::time_spec_t(receive_interval);

    // Issue stream commands to fill the command queue on the FPGA
    size_t num_initial_cmds = std::min<size_t>(X300_COMMAND_FIFO_DEPTH, rf_freqs.size());
    size_t num_issued_commands;

    for (num_issued_commands = 0; num_issued_commands < num_initial_cmds; num_issued_commands++) {
        stream_cmd.time_spec += receive_interval_ts;
        rx_stream->issue_stream_cmd(stream_cmd);
    }

    // Hop frequencies and acquire bursts of samples at each until done sweeping
    while(1) {

        std::cout << "Scanning..." << std::endl;
        uhd::time_spec_t start_time = uhd::time_spec_t::get_system_time();

        for (size_t i = 0; i < rf_freqs.size(); i++) {
            // Swap the mapping of synthesizers by setting the LO source
            // The unused channel will always
            std::string lo_src = (i % 2) ? "companion" : "internal";
            usrp->set_rx_lo_source(lo_src, uhd::usrp::multi_usrp::ALL_LOS, ACTIVE_CHAN);

            // Preconfigure the next frequency
            usrp->set_rx_freq(rf_freqs[(i+1) % rf_freqs.size()], UNUSED_CHAN);

            // Program the current frequency
            // This frequency was already pre-programmed in the previous iteration so the local oscillators
            // are already tuned. This call will only configure front-end filter, amplifiers, etc
            usrp->set_rx_freq(rf_freqs[i], ACTIVE_CHAN);

            // Receive one burst of samples
            twinrx_recv(buffs[i]);

            // Schedule another acquisition if necessary
            if (vm.count("repeat") or num_issued_commands < rf_freqs.size()) {
                stream_cmd.time_spec += receive_interval_ts;
                rx_stream->issue_stream_cmd(stream_cmd);
                num_issued_commands++;
            }
        }

        uhd::time_spec_t end_time = uhd::time_spec_t::get_system_time();
        std::cout << boost::format("Sweep done in %d milliseconds.\n") % ((end_time - start_time).get_real_secs() * 1000);

        // Optionally convert received samples to FFT and write to file
        if(vm.count("fft-path")) {
            write_fft_to_file(fft_path);
        }

        if (!vm.count("repeat")){
            break;
        }
    }

    std::cout << "Done!" << std::endl;

    usrp.reset();
    return EXIT_SUCCESS;
}