1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
//
// Copyright 2012,2014,20160 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/thread.hpp>
#include <boost/format.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <complex>
#include <iostream>
#include <thread>
#include <utility>
#include <vector>
static const double SAMP_RATE = 1e6;
namespace po = boost::program_options;
typedef std::vector<std::pair<double, double>> pair_vector;
/************************************************************************
* Misc functions
************************************************************************/
std::string MHz_str(double freq)
{
return std::string(str(boost::format("%5.2f MHz") % (freq / 1e6)));
}
std::string return_usrp_config_string(
uhd::usrp::multi_usrp::sptr usrp, int chan, bool test_tx, bool test_rx, bool is_b2xx)
{
uhd::dict<std::string, std::string> tx_info = usrp->get_usrp_tx_info(chan);
uhd::dict<std::string, std::string> rx_info = usrp->get_usrp_rx_info(chan);
std::string info_string;
std::string mboard_id, mboard_serial;
std::string tx_serial, tx_subdev_name, tx_subdev_spec;
std::string rx_serial, rx_subdev_name, rx_subdev_spec;
mboard_id = tx_info.get("mboard_id");
if (tx_info.get("mboard_serial").empty())
mboard_serial = "no serial";
else
mboard_serial = tx_info.get("mboard_serial");
info_string =
str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial);
if (test_tx) {
if (tx_info.get("tx_serial").empty())
tx_serial = "no serial";
else
tx_serial = tx_info.get("tx_serial");
tx_subdev_name = tx_info.get("tx_subdev_name");
tx_subdev_spec = tx_info.get("tx_subdev_spec");
info_string +=
is_b2xx ? str(boost::format("TX: %s (%s)") % tx_subdev_name % tx_subdev_spec)
: str(boost::format("TX: %s (%s, %s)") % tx_subdev_name % tx_serial
% tx_subdev_spec);
}
if (test_tx and test_rx)
info_string += "\n";
if (test_rx) {
if (rx_info.get("rx_serial").empty())
rx_serial = "no serial";
else
rx_serial = rx_info.get("rx_serial");
rx_subdev_name = rx_info.get("rx_subdev_name");
rx_subdev_spec = rx_info.get("rx_subdev_spec");
info_string +=
is_b2xx ? str(boost::format("RX: %s (%s)") % rx_subdev_name % rx_subdev_spec)
: str(boost::format("RX: %s (%s, %s)") % rx_subdev_name % rx_serial
% rx_subdev_spec);
}
return info_string;
}
std::string coercion_test(uhd::usrp::multi_usrp::sptr usrp,
std::string type,
int chan,
bool test_gain,
double freq_step,
double gain_step,
bool verbose)
{
// Getting USRP info
uhd::dict<std::string, std::string> usrp_info =
(type == "TX") ? usrp->get_usrp_tx_info(chan) : usrp->get_usrp_rx_info(chan);
std::string subdev_name = (type == "TX") ? usrp_info.get("tx_subdev_name")
: usrp_info.get("rx_subdev_name");
std::string subdev_spec = (type == "TX") ? usrp_info.get("tx_subdev_spec")
: usrp_info.get("rx_subdev_spec");
// Establish frequency range
std::vector<double> freqs;
std::vector<double> xcvr_freqs; // XCVR2450 has two ranges
uhd::freq_range_t freq_ranges = (type == "TX") ? usrp->get_fe_tx_freq_range(chan)
: usrp->get_fe_rx_freq_range(chan);
std::cout << boost::format("\nTesting %s coercion...") % type << std::endl;
for (const uhd::range_t& range : freq_ranges) {
double freq_begin = range.start();
double freq_end = range.stop();
if (subdev_name.find("XCVR2450") == 0) {
xcvr_freqs.push_back(freq_begin);
xcvr_freqs.push_back(freq_end);
}
double current_freq = freq_begin;
while (current_freq < freq_end) {
freqs.push_back(current_freq);
current_freq += freq_step;
}
if (freq_end != *freqs.end())
freqs.push_back(freq_end);
}
std::vector<double> gains;
if (test_gain) {
// Establish gain range
uhd::gain_range_t gain_range = (type == "TX") ? usrp->get_tx_gain_range(chan)
: usrp->get_rx_gain_range(chan);
double gain_begin = gain_range.start();
// Start gain at 0 if range begins negative
if (gain_begin < 0.0)
gain_begin = 0.0;
double gain_end = gain_range.stop();
double current_gain = gain_begin;
while (current_gain < gain_end) {
gains.push_back(current_gain);
current_gain += gain_step;
}
gains.push_back(gain_end);
}
// Establish error-storing variables
std::vector<double> bad_tune_freqs;
std::vector<double> no_lock_freqs;
pair_vector bad_gain_vals;
// Sensor names
std::vector<std::string> dboard_sensor_names = (type == "TX")
? usrp->get_tx_sensor_names(chan)
: usrp->get_rx_sensor_names(chan);
std::vector<std::string> mboard_sensor_names = usrp->get_mboard_sensor_names();
bool has_sensor =
(std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked"))
!= dboard_sensor_names.end();
for (double freq : freqs) {
// Testing for successful frequency tune
if (type == "TX")
usrp->set_tx_freq(freq, chan);
else
usrp->set_rx_freq(freq, chan);
std::this_thread::sleep_for(std::chrono::microseconds(long(1000)));
double actual_freq = (type == "TX") ? usrp->get_tx_freq(chan)
: usrp->get_rx_freq(chan);
if (freq == 0.0) {
if (floor(actual_freq + 0.5) == 0.0) {
if (verbose)
std::cout << boost::format("\n%s frequency successfully tuned to %s.")
% type % MHz_str(freq)
<< std::endl;
} else {
if (verbose)
std::cout << boost::format(
"\n%s frequency tuned to %s instead of %s.")
% type % MHz_str(actual_freq) % MHz_str(freq)
<< std::endl;
bad_tune_freqs.push_back(freq);
}
} else {
if ((freq / actual_freq > 0.9999) and (freq / actual_freq < 1.0001)) {
if (verbose)
std::cout << boost::format("\n%s frequency successfully tuned to %s.")
% type % MHz_str(freq)
<< std::endl;
} else {
if (verbose)
std::cout << boost::format(
"\n%s frequency tuned to %s instead of %s.")
% type % MHz_str(actual_freq) % MHz_str(freq)
<< std::endl;
bad_tune_freqs.push_back(freq);
}
}
// Testing for successful lock
if (has_sensor) {
bool is_locked = false;
for (int i = 0; i < 1000; i++) {
is_locked = (type == "TX")
? usrp->get_tx_sensor("lo_locked", 0).to_bool()
: usrp->get_rx_sensor("lo_locked", 0).to_bool();
if (is_locked) {
break;
}
std::this_thread::sleep_for(std::chrono::microseconds(1000));
}
if (is_locked) {
if (verbose)
std::cout << boost::format(
"LO successfully locked at %s frequency %s.")
% type % MHz_str(freq)
<< std::endl;
} else {
if (verbose)
std::cout << boost::format(
"LO did not successfully lock at %s frequency %s.")
% type % MHz_str(freq)
<< std::endl;
no_lock_freqs.push_back(freq);
}
}
if (test_gain) {
// Testing for successful gain tune
for (double gain : gains) {
if (type == "TX")
usrp->set_tx_gain(gain, chan);
else
usrp->set_rx_gain(gain, chan);
std::this_thread::sleep_for(std::chrono::microseconds(1000));
double actual_gain = (type == "TX") ? usrp->get_tx_gain(chan)
: usrp->get_rx_gain(chan);
if (gain == 0.0) {
if (actual_gain == 0.0) {
if (verbose)
std::cout << boost::format("Gain successfully set to %5.2f "
"at %s frequency %s.")
% gain % type % MHz_str(freq)
<< std::endl;
} else {
if (verbose)
std::cout << boost::format("Gain set to %5.2f instead of "
"%5.2f at %s frequency %s.")
% actual_gain % gain % type % MHz_str(freq)
<< std::endl;
bad_gain_vals.push_back(std::make_pair(freq, gain));
}
} else {
if ((gain / actual_gain) > 0.9999 and (gain / actual_gain) < 1.0001) {
if (verbose)
std::cout << boost::format("Gain successfully set to %5.2f "
"at %s frequency %s.")
% gain % type % MHz_str(freq)
<< std::endl;
} else {
if (verbose)
std::cout << boost::format("Gain set to %5.2f instead of "
"%5.2f at %s frequency %s.")
% actual_gain % gain % type % MHz_str(freq)
<< std::endl;
bad_gain_vals.push_back(std::make_pair(freq, gain));
}
}
}
}
}
std::string results = str(boost::format("%s Summary:\n") % type);
if (subdev_name.find("XCVR2450") == 0) {
results += str(boost::format("Frequency Range: %s - %s, %s - %s\n")
% MHz_str(xcvr_freqs[0]) % MHz_str(xcvr_freqs[1])
% MHz_str(xcvr_freqs[2]) % MHz_str(xcvr_freqs[3]));
} else
results +=
str(boost::format("Frequency Range: %s - %s (Step: %s)\n")
% MHz_str(freqs.front()) % MHz_str(freqs.back()) % MHz_str(freq_step));
if (test_gain)
results += str(boost::format("Gain Range:%5.2f - %5.2f (Step:%5.2f)\n")
% gains.front() % gains.back() % gain_step);
if (bad_tune_freqs.empty())
results += "USRP successfully tuned to all frequencies.";
else if (bad_tune_freqs.size() > 10 and not verbose) {
// If tuning fails at many values, don't print them all
results += str(boost::format("USRP did not successfully tune at %d frequencies.")
% bad_tune_freqs.size());
} else {
results += "USRP did not successfully tune to the following frequencies: ";
for (double bad_freq : bad_tune_freqs) {
if (bad_freq != *bad_tune_freqs.begin())
results += ", ";
results += MHz_str(bad_freq);
}
}
if (has_sensor) {
results += "\n";
if (no_lock_freqs.empty())
results += "LO successfully locked at all frequencies.";
else if (no_lock_freqs.size() > 10 and not verbose) {
// If locking fails at many values, don't print them all
results +=
str(boost::format("USRP did not successfully lock at %d frequencies.")
% no_lock_freqs.size());
} else {
results += "LO did not lock at the following frequencies: ";
for (double bad_freq : no_lock_freqs) {
if (bad_freq != *no_lock_freqs.begin())
results += ", ";
results += MHz_str(bad_freq);
}
}
}
if (test_gain) {
results += "\n";
if (bad_gain_vals.empty())
results +=
"USRP successfully set all specified gain values at all frequencies.";
else if (bad_gain_vals.size() > 10 and not verbose) {
// If gain fails at many values, don't print them all
results +=
str(boost::format("USRP did not successfully set gain at %d values.")
% bad_gain_vals.size());
} else {
results +=
"USRP did not successfully set gain under the following circumstances:";
for (auto& bad_pair : bad_gain_vals) {
double bad_freq = bad_pair.first;
double bad_gain = bad_pair.second;
results += str(boost::format("\nFrequency: %s, Gain: %5.2f")
% MHz_str(bad_freq) % bad_gain);
}
}
}
return results;
}
/************************************************************************
* Initial Setup
************************************************************************/
int UHD_SAFE_MAIN(int argc, char* argv[])
{
// Variables
int chan;
std::string args;
double freq_step, gain_step;
std::string ref;
std::string tx_results;
std::string rx_results;
std::string usrp_config;
// Set up the program options
po::options_description desc("Allowed Options");
// clang-format off
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "Specify the UHD device")
("chan", po::value<int>(&chan)->default_value(0), "Specify multi_usrp channel")
("freq-step", po::value<double>(&freq_step)->default_value(100e6), "Specify the delta between frequency scans")
("gain-step", po::value<double>(&gain_step)->default_value(1.0), "Specify the delta between gain scans")
("tx", "Specify to test TX frequency and gain coercion")
("rx", "Specify to test RX frequency and gain coercion")
("ref", po::value<std::string>(&ref)->default_value("internal"), "Waveform type: internal, external, or mimo")
("no-tx-gain", "Do not test TX gain")
("no-rx-gain", "Do not test RX gain")
("verbose", "Output every frequency and gain check instead of just final summary")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// Help messages, errors
if (vm.count("help") > 0) {
std::cout << "UHD Daughterboard Coercion Test\n"
"This program tests your USRP daughterboard(s) to\n"
"make sure that they can successfully tune to all\n"
"frequencies and gains in their advertised ranges.\n\n";
std::cout << desc << std::endl;
return EXIT_SUCCESS;
}
if (vm.count("tx") + vm.count("rx") == 0) {
std::cout << desc << std::endl;
std::cout << "Specify --tx to test for TX frequency coercion\n"
"Specify --rx to test for RX frequency coercion\n";
return EXIT_FAILURE;
}
// Create a USRP device
std::cout << std::endl;
uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP);
std::cout << boost::format("Creating the USRP device with: %s...") % args
<< std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << std::endl
<< boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
usrp->set_tx_rate(SAMP_RATE);
usrp->set_rx_rate(SAMP_RATE);
// Boolean variables based on command line input
bool test_tx = vm.count("tx") > 0;
bool test_rx = vm.count("rx") > 0;
bool test_tx_gain = !(vm.count("no-tx-gain") > 0)
and (usrp->get_tx_gain_range().stop() > 0);
bool test_rx_gain = !(vm.count("no-rx-gain") > 0)
and (usrp->get_rx_gain_range().stop() > 0);
bool verbose = vm.count("verbose") > 0;
if (ref != "internal" and ref != "external" and ref != "mimo") {
std::cout << desc << std::endl;
std::cout << "REF must equal internal, external, or mimo." << std::endl;
return EXIT_FAILURE;
}
// Use TX mboard ID to determine if this is a B2xx, will still return value if there
// is no TX
std::string tx_mboard_id = usrp->get_usrp_tx_info(chan).get("mboard_id");
bool is_b2xx = (tx_mboard_id == "B200" or tx_mboard_id == "B210");
// Don't perform daughterboard validity checks for B200/B210
if ((not is_b2xx) and test_tx) {
std::string tx_dboard_name = usrp->get_usrp_tx_info(chan).get("tx_id");
if (tx_dboard_name == "Basic TX (0x0000)" or tx_dboard_name == "LF TX (0x000e)") {
std::cout << desc << std::endl;
std::cout << boost::format(
"This test does not work with the %s daughterboard.")
% tx_dboard_name
<< std::endl;
return EXIT_FAILURE;
} else if (tx_dboard_name == "Unknown (0xffff)") {
std::cout << desc << std::endl;
std::cout
<< "This daughterboard is unrecognized, or there is no TX daughterboard."
<< std::endl;
return EXIT_FAILURE;
}
}
// Don't perform daughterboard validity checks for B200/B210
if ((not is_b2xx) and test_rx) {
std::string rx_dboard_name = usrp->get_usrp_rx_info(chan).get("rx_id");
if (rx_dboard_name == "Basic RX (0x0001)" or rx_dboard_name == "LF RX (0x000f)") {
std::cout << desc << std::endl;
std::cout << boost::format(
"This test does not work with the %s daughterboard.")
% rx_dboard_name
<< std::endl;
return EXIT_FAILURE;
} else if (rx_dboard_name == "Unknown (0xffff)") {
std::cout << desc << std::endl;
std::cout
<< "This daughterboard is unrecognized, or there is no RX daughterboard."
<< std::endl;
return EXIT_FAILURE;
}
}
// Setting clock source
usrp->set_clock_source(ref);
std::this_thread::sleep_for(std::chrono::seconds(1));
std::vector<std::string> sensor_names = usrp->get_mboard_sensor_names(0);
if ((ref == "mimo")
and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked")
!= sensor_names.end())) {
uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked", 0);
std::cout << boost::format("Checking MIMO lock: %s ...")
% mimo_locked.to_pp_string()
<< std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external")
and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked")
!= sensor_names.end())) {
uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked", 0);
std::cout << boost::format("Checking REF lock: %s ...")
% ref_locked.to_pp_string()
<< std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
usrp_config = return_usrp_config_string(usrp, chan, test_tx, test_rx, is_b2xx);
if (test_tx)
tx_results =
coercion_test(usrp, "TX", chan, test_tx_gain, freq_step, gain_step, verbose);
if (test_rx)
rx_results =
coercion_test(usrp, "RX", chan, test_rx_gain, freq_step, gain_step, verbose);
std::cout << std::endl << usrp_config << std::endl << std::endl;
if (test_tx)
std::cout << tx_results << std::endl;
if (test_tx and test_rx)
std::cout << std::endl;
if (test_rx)
std::cout << rx_results << std::endl;
return EXIT_SUCCESS;
}
|