1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
//
// Copyright 2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
// Example UHD/RFNoC application: Connect an rx radio to a tx radio and
// run a loopback.
#include <uhd/rfnoc/block_id.hpp>
#include <uhd/rfnoc/mb_controller.hpp>
#include <uhd/rfnoc/radio_control.hpp>
#include <uhd/rfnoc_graph.hpp>
#include <uhd/types/tune_request.hpp>
#include <uhd/utils/graph_utils.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/safe_main.hpp>
#include <boost/format.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <csignal>
#include <iostream>
#include <thread>
namespace po = boost::program_options;
using uhd::rfnoc::radio_control;
using namespace std::chrono_literals;
/****************************************************************************
* SIGINT handling
***************************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int)
{
stop_signal_called = true;
}
/****************************************************************************
* main
***************************************************************************/
int UHD_SAFE_MAIN(int argc, char* argv[])
{
// variables to be set by po
std::string args, rx_ant, tx_ant, rx_blockid, tx_blockid, ref, pps;
size_t total_num_samps, spp, rx_chan, tx_chan;
double rate, rx_freq, tx_freq, rx_gain, tx_gain, rx_bw, tx_bw, total_time, setup_time;
bool rx_timestamps;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "UHD device address args")
("spp", po::value<size_t>(&spp)->default_value(0), "Samples per packet (reduce for lower latency)")
("rx-freq", po::value<double>(&rx_freq)->default_value(0.0), "Rx RF center frequency in Hz")
("tx-freq", po::value<double>(&tx_freq)->default_value(0.0), "Tx RF center frequency in Hz")
("rx-gain", po::value<double>(&rx_gain)->default_value(0.0), "Rx RF center gain in Hz")
("tx-gain", po::value<double>(&tx_gain)->default_value(0.0), "Tx RF center gain in Hz")
("rx-ant", po::value<std::string>(&rx_ant), "Receive antenna selection")
("tx-ant", po::value<std::string>(&tx_ant), "Transmit antenna selection")
("rx-blockid", po::value<std::string>(&rx_blockid)->default_value("0/Radio#0"), "Receive radio block ID")
("tx-blockid", po::value<std::string>(&tx_blockid)->default_value("0/Radio#1"), "Transmit radio block ID")
("rx-chan", po::value<size_t>(&rx_chan)->default_value(0), "Channel index on receive radio")
("tx-chan", po::value<size_t>(&tx_chan)->default_value(0), "Channel index on transmit radio")
("rx-bw", po::value<double>(&rx_bw), "RX analog frontend filter bandwidth in Hz")
("tx-bw", po::value<double>(&tx_bw), "TX analog frontend filter bandwidth in Hz")
("rx-timestamps", po::value<bool>(&rx_timestamps)->default_value(false), "Set timestamps on RX")
("setup", po::value<double>(&setup_time)->default_value(0.1), "seconds of setup time")
("nsamps", po::value<size_t>(&total_num_samps)->default_value(0), "total number of samples to receive")
("rate", po::value<double>(&rate)->default_value(0.0), "Sampling rate")
("duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive")
("int-n", "Tune USRP with integer-N tuning")
("ref", po::value<std::string>(&ref)->default_value("internal"), "clock reference (internal, external, mimo, gpsdo)")
("pps", po::value<std::string>(&pps)->default_value("internal"), "PPS source (internal, external, mimo, gpsdo)")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << boost::format("RFNoC: Radio loopback test %s") % desc << std::endl;
std::cout
<< std::endl
<< "This application streams data from one radio to another using RFNoC.\n"
<< std::endl;
return ~0;
}
/************************************************************************
* Create device and block controls
***********************************************************************/
std::cout << std::endl;
std::cout << boost::format("Creating the RFNoC graph with args: %s...") % args
<< std::endl;
uhd::rfnoc::rfnoc_graph::sptr graph = uhd::rfnoc::rfnoc_graph::make(args);
// Create handles for radio objects
uhd::rfnoc::block_id_t rx_radio_ctrl_id(rx_blockid);
uhd::rfnoc::block_id_t tx_radio_ctrl_id(tx_blockid);
// This next line will fail if the radio is not actually available
uhd::rfnoc::radio_control::sptr rx_radio_ctrl =
graph->get_block<uhd::rfnoc::radio_control>(rx_radio_ctrl_id);
uhd::rfnoc::radio_control::sptr tx_radio_ctrl =
graph->get_block<uhd::rfnoc::radio_control>(tx_radio_ctrl_id);
std::cout << "Using RX radio " << rx_radio_ctrl_id << ", channel " << rx_chan
<< std::endl;
std::cout << "Using TX radio " << tx_radio_ctrl_id << ", channel " << tx_chan
<< std::endl;
size_t rx_mb_idx = rx_radio_ctrl_id.get_device_no();
/************************************************************************
* Set up radio
***********************************************************************/
// Connect the RX radio to the TX radio
uhd::rfnoc::connect_through_blocks(
graph, rx_radio_ctrl_id, rx_chan, tx_radio_ctrl_id, tx_chan);
graph->commit();
rx_radio_ctrl->enable_rx_timestamps(rx_timestamps, rx_chan);
// Set time and clock reference
if (vm.count("ref")) {
// Lock mboard clocks
for (size_t i = 0; i < graph->get_num_mboards(); ++i) {
graph->get_mb_controller(i)->set_clock_source(ref);
}
}
if (vm.count("pps")) {
// Lock mboard clocks
for (size_t i = 0; i < graph->get_num_mboards(); ++i) {
graph->get_mb_controller(i)->set_time_source(pps);
}
}
// set the sample rate
if (rate <= 0.0) {
rate = rx_radio_ctrl->get_rate();
} else {
std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6)
<< std::endl;
rate = rx_radio_ctrl->set_rate(rate);
std::cout << boost::format("Actual RX Rate: %f Msps...") % (rate / 1e6)
<< std::endl
<< std::endl;
}
// set the center frequency
if (vm.count("rx-freq")) {
std::cout << boost::format("Setting RX Freq: %f MHz...") % (rx_freq / 1e6)
<< std::endl;
uhd::tune_request_t tune_request(rx_freq);
if (vm.count("int-n")) {
tune_request.args = uhd::device_addr_t("mode_n=integer");
}
rx_radio_ctrl->set_rx_frequency(rx_freq, rx_chan);
std::cout << boost::format("Actual RX Freq: %f MHz...")
% (rx_radio_ctrl->get_rx_frequency(rx_chan) / 1e6)
<< std::endl
<< std::endl;
}
if (vm.count("tx-freq")) {
std::cout << boost::format("Setting TX Freq: %f MHz...") % (tx_freq / 1e6)
<< std::endl;
uhd::tune_request_t tune_request(tx_freq);
if (vm.count("int-n")) {
tune_request.args = uhd::device_addr_t("mode_n=integer");
}
tx_radio_ctrl->set_tx_frequency(tx_freq, tx_chan);
std::cout << boost::format("Actual TX Freq: %f MHz...")
% (tx_radio_ctrl->get_tx_frequency(tx_chan) / 1e6)
<< std::endl
<< std::endl;
}
// set the rf gain
if (vm.count("rx-gain")) {
std::cout << boost::format("Setting RX Gain: %f dB...") % rx_gain << std::endl;
rx_radio_ctrl->set_rx_gain(rx_gain, rx_chan);
std::cout << boost::format("Actual RX Gain: %f dB...")
% rx_radio_ctrl->get_rx_gain(rx_chan)
<< std::endl
<< std::endl;
}
if (vm.count("tx-gain")) {
std::cout << boost::format("Setting TX Gain: %f dB...") % tx_gain << std::endl;
tx_radio_ctrl->set_tx_gain(tx_gain, tx_chan);
std::cout << boost::format("Actual TX Gain: %f dB...")
% tx_radio_ctrl->get_tx_gain(tx_chan)
<< std::endl
<< std::endl;
}
// set the IF filter bandwidth
if (vm.count("rx-bw")) {
std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % (rx_bw / 1e6)
<< std::endl;
rx_radio_ctrl->set_rx_bandwidth(rx_bw, rx_chan);
std::cout << boost::format("Actual RX Bandwidth: %f MHz...")
% (rx_radio_ctrl->get_rx_bandwidth(rx_chan) / 1e6)
<< std::endl
<< std::endl;
}
if (vm.count("tx-bw")) {
std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % (tx_bw / 1e6)
<< std::endl;
tx_radio_ctrl->set_tx_bandwidth(tx_bw, tx_chan);
std::cout << boost::format("Actual TX Bandwidth: %f MHz...")
% (tx_radio_ctrl->get_tx_bandwidth(tx_chan) / 1e6)
<< std::endl
<< std::endl;
}
// set the antennas
if (vm.count("rx-ant")) {
rx_radio_ctrl->set_rx_antenna(rx_ant, rx_chan);
}
if (vm.count("tx-ant")) {
tx_radio_ctrl->set_tx_antenna(tx_ant, tx_chan);
}
// check Ref and LO Lock detect
if (not vm.count("skip-lo")) {
// TODO
// check_locked_sensor(usrp->get_rx_sensor_names(0), "lo_locked",
// boost::bind(&uhd::usrp::multi_usrp::get_rx_sensor, usrp, _1, radio_id),
// setup_time); if (ref == "external")
// check_locked_sensor(usrp->get_mboard_sensor_names(0), "ref_locked",
// boost::bind(&uhd::usrp::multi_usrp::get_mboard_sensor, usrp, _1, radio_id),
// setup_time);
}
if (vm.count("spp")) {
std::cout << "Setting samples per packet to: " << spp << std::endl;
rx_radio_ctrl->set_property<int>("spp", spp, 0);
spp = rx_radio_ctrl->get_property<int>("spp", 0);
std::cout << "Actual samples per packet = " << spp << std::endl;
}
// Allow for some setup time
std::this_thread::sleep_for(1s * setup_time);
// Arm SIGINT handler
std::signal(SIGINT, &sig_int_handler);
// Calculate timeout and set timers
// We just need to check is nsamps was set, otherwise we'll use the duration
if (total_num_samps > 0) {
total_time = total_num_samps / rate;
std::cout << boost::format("Expected streaming time: %.3f") % total_time
<< std::endl;
}
// Start streaming
uhd::stream_cmd_t stream_cmd((total_num_samps == 0)
? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS
: uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = size_t(total_num_samps);
stream_cmd.stream_now = false;
stream_cmd.time_spec =
graph->get_mb_controller(rx_mb_idx)->get_timekeeper(rx_mb_idx)->get_time_now()
+ setup_time;
std::cout << "Issuing start stream cmd..." << std::endl;
rx_radio_ctrl->issue_stream_cmd(stream_cmd, rx_chan);
std::cout << "Wait..." << std::endl;
// Wait until we can exit
uhd::time_spec_t elapsed_time = 0.0;
while (not stop_signal_called) {
std::this_thread::sleep_for(100ms);
if (total_time > 0.0) {
elapsed_time += 0.1;
if (elapsed_time > total_time) {
break;
}
}
}
// Stop radio
stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS;
std::cout << "Issuing stop stream cmd..." << std::endl;
rx_radio_ctrl->issue_stream_cmd(stream_cmd, rx_chan);
std::cout << "Done" << std::endl;
// Allow for the samples and ACKs to propagate
std::this_thread::sleep_for(100ms);
return EXIT_SUCCESS;
}
|