1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
//
// Copyright 2014-15 Ettus Research LLC
//
// SPDX-License-Identifier: GPL-3.0
//
// Example for GPIO testing and bit banging.
//
// This example was originally designed to test the 11 bit wide front panel
// GPIO on the X300 series and has since been adapted to work with any GPIO
// bank on any USRP and provide optional bit banging. Please excuse the
// clutter. Also, there is no current way to detect the width of the
// specified GPIO bank, so the user must specify the width with the --bits
// flag if more than 11 bits.
//
// GPIO Testing:
// For testing, GPIO bits are set as follows:
// GPIO[0] = ATR output 1 at idle
// GPIO[1] = ATR output 1 during RX
// GPIO[2] = ATR output 1 during TX
// GPIO[3] = ATR output 1 during full duplex
// GPIO[4] = output
// GPIO[n:5] = input (all other pins)
// The testing cycles through idle, TX, RX, and full duplex, dwelling on each
// test case (default 2 seconds), and then comparing the readback register with
// the expected values of the outputs for verification. The values of all GPIO
// registers are displayed at the end of each test case. Outputs can be
// physically looped back to inputs to manually verify the inputs.
//
// GPIO Bit Banging:
// GPIO banks have the standard registers of DDR for data direction and OUT
// for output values. Users can bit bang the GPIO bits by using this example
// with the --bitbang flag and specifying the --ddr and --out flags to set the
// values of the corresponding registers. The READBACK register is
// continuously read for the duration of the dwell time (default 2 seconds) so
// users can monitor changes on the inputs.
//
// Automatic Transmit/Receive (ATR):
// In addition to the standard DDR and OUT registers, the GPIO banks also
// have ATR (Automatic Transmit/Receive) control registers that allow the
// GPIO pins to be automatically set to specific values when the USRP is
// idle, transmitting, receiving, or operating in full duplex mode. The
// description of these registers is below:
// CTRL - Control (0=manual, 1=ATR)
// ATR_0X - Values to be set when idle
// ATR_RX - Output values to be set when receiving
// ATR_TX - Output values to be set when transmitting
// ATR_XX - Output values to be set when operating in full duplex
// This code below contains examples of setting all these registers. On
// devices with multiple radios, the ATR for the front panel GPIO is driven
// by the state of the first radio (0 or A).
//
// The UHD API
// The multi_usrp::set_gpio_attr() method is the UHD API for configuring and
// controlling the GPIO banks. The parameters to the method are:
// bank - the name of the GPIO bank (typically "FP0" for front panel GPIO,
// "TX<n>" for TX daughter card GPIO, or
// "RX<n>" for RX daughter card GPIO)
// attr - attribute (register) to change ("DDR", "OUT", "CTRL", "ATR_0X",
// "ATR_RX", "ATR_TX", "ATR_XX")
// value - the value to be set
// mask - a mask indicating which bits in the specified attribute register are
// to be changed (default is all bits).
#include <uhd/utils/thread.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/convert.hpp>
#include <boost/assign.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <stdint.h>
#include <boost/thread.hpp>
#include <csignal>
#include <iostream>
#include <stdlib.h>
static const std::string GPIO_DEFAULT_CPU_FORMAT = "fc32";
static const std::string GPIO_DEFAULT_OTW_FORMAT = "sc16";
static const double GPIO_DEFAULT_RX_RATE = 500e3;
static const double GPIO_DEFAULT_TX_RATE = 500e3;
static const double GPIO_DEFAULT_DWELL_TIME = 2.0;
static const std::string GPIO_DEFAULT_GPIO = "FP0";
static const size_t GPIO_DEFAULT_NUM_BITS = 11;
static const std::string GPIO_DEFAULT_CTRL = "0x0"; // all as user controlled
static const std::string GPIO_DEFAULT_DDR = "0x0"; // all as inputs
static const std::string GPIO_DEFAULT_OUT = "0x0";
static inline uint32_t GPIO_BIT(const size_t x)
{
return (1 << x);
}
namespace po = boost::program_options;
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}
std::string to_bit_string(uint32_t val, const size_t num_bits)
{
std::string out;
for (int i = num_bits - 1; i >= 0; i--)
{
std::string bit = ((val >> i) & 1) ? "1" : "0";
out += " ";
out += bit;
}
return out;
}
void output_reg_values(
const std::string bank,
const uhd::usrp::multi_usrp::sptr &usrp,
const size_t num_bits)
{
std::vector<std::string> attrs = boost::assign::list_of("CTRL")("DDR")("ATR_0X")("ATR_RX")("ATR_TX")("ATR_XX")("OUT")("READBACK");
std::cout << (boost::format("%10s ") % "Bit");
for (int i = num_bits - 1; i >= 0; i--)
std::cout << (boost::format(" %2d") % i);
std::cout << std::endl;
for(std::string &attr: attrs)
{
std::cout << (boost::format("%10s:%s")
% attr % to_bit_string(uint32_t(usrp->get_gpio_attr(bank, attr)), num_bits))
<< std::endl;
}
}
int UHD_SAFE_MAIN(int argc, char *argv[])
{
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args;
std::string cpu, otw;
double rx_rate, tx_rate, dwell;
std::string gpio;
size_t num_bits;
std::string ctrl_str;
std::string ddr_str;
std::string out_str;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args")
("repeat", "repeat loop until Ctrl-C is pressed")
("cpu", po::value<std::string>(&cpu)->default_value(GPIO_DEFAULT_CPU_FORMAT), "cpu data format")
("otw", po::value<std::string>(&otw)->default_value(GPIO_DEFAULT_OTW_FORMAT), "over the wire data format")
("rx_rate", po::value<double>(&rx_rate)->default_value(GPIO_DEFAULT_RX_RATE), "rx sample rate")
("tx_rate", po::value<double>(&tx_rate)->default_value(GPIO_DEFAULT_TX_RATE), "tx sample rate")
("dwell", po::value<double>(&dwell)->default_value(GPIO_DEFAULT_DWELL_TIME), "dwell time in seconds for each test case")
("bank", po::value<std::string>(&gpio)->default_value(GPIO_DEFAULT_GPIO), "name of gpio bank")
("bits", po::value<size_t>(&num_bits)->default_value(GPIO_DEFAULT_NUM_BITS), "number of bits in gpio bank")
("bitbang", "single test case where user sets values for CTRL, DDR, and OUT registers")
("ddr", po::value<std::string>(&ddr_str)->default_value(GPIO_DEFAULT_DDR), "GPIO DDR reg value")
("out", po::value<std::string>(&out_str)->default_value(GPIO_DEFAULT_OUT), "GPIO OUT reg value")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("gpio %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
//print out initial unconfigured state of FP GPIO
std::cout << "Initial GPIO values:" << std::endl;
output_reg_values(gpio, usrp, num_bits);
//configure GPIO registers
uint32_t ddr = strtoul(ddr_str.c_str(), NULL, 0);
uint32_t out = strtoul(out_str.c_str(), NULL, 0);
uint32_t ctrl = 0;
uint32_t atr_idle = 0;
uint32_t atr_rx = 0;
uint32_t atr_tx = 0;
uint32_t atr_duplex = 0;
uint32_t mask = (1 << num_bits) - 1;
if (!vm.count("bitbang"))
{
//set up GPIO outputs:
//GPIO[0] = ATR output 1 at idle
ctrl |= GPIO_BIT(0);
atr_idle |= GPIO_BIT(0);
ddr |= GPIO_BIT(0);
//GPIO[1] = ATR output 1 during RX
ctrl |= GPIO_BIT(1);
ddr |= GPIO_BIT(1);
atr_rx |= GPIO_BIT(1);
//GPIO[2] = ATR output 1 during TX
ctrl |= GPIO_BIT(2);
ddr |= GPIO_BIT(2);
atr_tx |= GPIO_BIT(2);
//GPIO[3] = ATR output 1 during full duplex
ctrl |= GPIO_BIT(3);
ddr |= GPIO_BIT(3);
atr_duplex |= GPIO_BIT(3);
//GPIO[4] = output
ddr |= GPIO_BIT(4);
}
//set data direction register (DDR)
usrp->set_gpio_attr(gpio, "DDR", ddr, mask);
//set control register
usrp->set_gpio_attr(gpio, "CTRL", ctrl, mask);
//set output values (OUT)
usrp->set_gpio_attr(gpio, "OUT", out, mask);
//set ATR registers
usrp->set_gpio_attr(gpio, "ATR_0X", atr_idle, mask);
usrp->set_gpio_attr(gpio, "ATR_RX", atr_rx, mask);
usrp->set_gpio_attr(gpio, "ATR_TX", atr_tx, mask);
usrp->set_gpio_attr(gpio, "ATR_XX", atr_duplex, mask);
//print out initial state of FP GPIO
std::cout << "\nConfigured GPIO values:" << std::endl;
output_reg_values(gpio, usrp, num_bits);
std::cout << std::endl;
//set up streams
uhd::stream_args_t rx_args(cpu, otw);
uhd::stream_args_t tx_args(cpu, otw);
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(rx_args);
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(tx_args);
uhd::stream_cmd_t rx_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
rx_cmd.stream_now = true;
usrp->set_rx_rate(rx_rate);
usrp->set_tx_rate(tx_rate);
//set up buffers for tx and rx
const size_t max_samps_per_packet = rx_stream->get_max_num_samps();
const size_t nsamps_per_buff = max_samps_per_packet;
std::vector<char> rx_buff(max_samps_per_packet*uhd::convert::get_bytes_per_item(cpu));
std::vector<char> tx_buff(max_samps_per_packet*uhd::convert::get_bytes_per_item(cpu));
std::vector<void *> rx_buffs, tx_buffs;
for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++)
rx_buffs.push_back(&rx_buff.front()); //same buffer for each channel
for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++)
tx_buffs.push_back(&tx_buff.front()); //same buffer for each channel
uhd::rx_metadata_t rx_md;
uhd::tx_metadata_t tx_md;
tx_md.has_time_spec = false;
tx_md.start_of_burst = true;
uhd::time_spec_t stop_time;
double timeout = 0.01;
uhd::time_spec_t dwell_time(dwell);
int loop = 0;
uint32_t rb, expected;
//register signal handler
std::signal(SIGINT, &sig_int_handler);
if (!vm.count("bitbang"))
{
// Test the mask parameter of the multi_usrp::set_gpio_attr API
// We only need to test once with no dwell time
std::cout << "\nTesting mask..." << std::flush;
//send a value of all 1's to the DDR with a mask for only upper most bit
usrp->set_gpio_attr(gpio, "DDR", ~0, GPIO_BIT(num_bits - 1));
//upper most bit should now be 1, but all the other bits should be unchanged
rb = usrp->get_gpio_attr(gpio, "DDR") & mask;
expected = ddr | GPIO_BIT(num_bits - 1);
if (rb == expected)
std::cout << "pass:" << std::endl;
else
std::cout << "fail:" << std::endl;
output_reg_values(gpio, usrp, num_bits);
//restore DDR value
usrp->set_gpio_attr(gpio, "DDR", ddr, mask);
}
while (not stop_signal_called)
{
int failures = 0;
if (vm.count("repeat"))
std::cout << "Press Ctrl + C to quit..." << std::endl;
if (vm.count("bitbang"))
{
// dwell and continuously read back GPIO values
stop_time = usrp->get_time_now() + dwell_time;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
rb = usrp->get_gpio_attr(gpio, "READBACK");
std::cout << "\rREADBACK: " << to_bit_string(rb, num_bits);
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
}
std::cout << std::endl;
}
else
{
// test user controlled GPIO and ATR idle by setting bit 4 high for 1 second
std::cout << "\nTesting user controlled GPIO and ATR idle output..." << std::flush;
usrp->set_gpio_attr(gpio, "OUT", 1 << 4, 1 << 4);
stop_time = usrp->get_time_now() + dwell_time;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
}
rb = usrp->get_gpio_attr(gpio, "READBACK");
expected = GPIO_BIT(4) | GPIO_BIT(0);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail:" << std::endl;
if ((rb & GPIO_BIT(0)) == 0)
std::cout << "Bit 0 should be set, but is not" << std::endl;
if ((rb & GPIO_BIT(4)) == 0)
std::cout << "Bit 4 should be set, but is not" << std::endl;
} else {
std::cout << "pass:" << std::endl;
}
output_reg_values(gpio, usrp, num_bits);
usrp->set_gpio_attr(gpio, "OUT", 0, GPIO_BIT(4));
if (stop_signal_called)
break;
// test ATR RX by receiving for 1 second
std::cout << "\nTesting ATR RX output..." << std::flush;
rx_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS;
rx_stream->issue_stream_cmd(rx_cmd);
stop_time = usrp->get_time_now() + dwell_time;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
try {
rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
}
rb = usrp->get_gpio_attr(gpio, "READBACK");
expected = GPIO_BIT(1);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail:" << std::endl;
std::cout << "Bit 1 should be set, but is not" << std::endl;
} else {
std::cout << "pass:" << std::endl;
}
output_reg_values(gpio, usrp, num_bits);
rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
//clear out any data left in the rx stream
try {
rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
if (stop_signal_called)
break;
// test ATR TX by transmitting for 1 second
std::cout << "\nTesting ATR TX output..." << std::flush;
stop_time = usrp->get_time_now() + dwell_time;
tx_md.start_of_burst = true;
tx_md.end_of_burst = false;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
try {
tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout);
tx_md.start_of_burst = false;
} catch(...){}
}
rb = usrp->get_gpio_attr(gpio, "READBACK");
expected = GPIO_BIT(2);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail:" << std::endl;
std::cout << "Bit 2 should be set, but is not" << std::endl;
} else {
std::cout << "pass:" << std::endl;
}
output_reg_values(gpio, usrp, num_bits);
tx_md.end_of_burst = true;
try {
tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout);
} catch(...){}
if (stop_signal_called)
break;
// test ATR RX by transmitting and receiving for 1 second
std::cout << "\nTesting ATR full duplex output..." << std::flush;
rx_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS;
rx_stream->issue_stream_cmd(rx_cmd);
tx_md.start_of_burst = true;
tx_md.end_of_burst = false;
stop_time = usrp->get_time_now() + dwell_time;
while (not stop_signal_called and usrp->get_time_now() < stop_time)
{
try {
tx_stream->send(rx_buffs, nsamps_per_buff, tx_md, timeout);
tx_md.start_of_burst = false;
rx_stream->recv(tx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
}
rb = usrp->get_gpio_attr(gpio, "READBACK");
expected = GPIO_BIT(3);
if ((rb & expected) != expected)
{
++failures;
std::cout << "fail:" << std::endl;
std::cout << "Bit 3 should be set, but is not" << std::endl;
} else {
std::cout << "pass:" << std::endl;
}
output_reg_values(gpio, usrp, num_bits);
rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
tx_md.end_of_burst = true;
try {
tx_stream->send(tx_buffs, nsamps_per_buff, tx_md, timeout);
} catch(...){}
//clear out any data left in the rx stream
try {
rx_stream->recv(rx_buffs, nsamps_per_buff, rx_md, timeout);
} catch(...){}
std::cout << std::endl;
if (failures)
std::cout << failures << " tests failed" << std::endl;
else
std::cout << "All tests passed!" << std::endl;
}
if (!vm.count("repeat"))
break;
if (not stop_signal_called)
std::cout << (boost::format("\nLoop %d completed") % ++loop) << std::endl;
}
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
|