aboutsummaryrefslogtreecommitdiffstats
path: root/host/examples/benchmark_streamer.cpp
blob: 093d4254f7b9faa9773d017c8cb32cd05e26d9bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
//
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include <uhd/convert.hpp>
#include <uhd/rfnoc/block_ctrl.hpp>
#include <uhd/rfnoc/ddc_block_ctrl.hpp>
#include <uhd/rfnoc/duc_block_ctrl.hpp>
#include <uhd/rfnoc/null_block_ctrl.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/thread.hpp>
#include <boost/algorithm/string/trim_all.hpp>
#include <boost/format.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <deque>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <thread>

namespace po = boost::program_options;

struct traffic_counter_values
{
    uint64_t clock_cycles;

    uint64_t xbar_to_shell_xfer_count;
    uint64_t xbar_to_shell_pkt_count;

    uint64_t shell_to_xbar_xfer_count;
    uint64_t shell_to_xbar_pkt_count;

    uint64_t shell_to_ce_xfer_count;
    uint64_t shell_to_ce_pkt_count;

    uint64_t ce_to_shell_xfer_count;
    uint64_t ce_to_shell_pkt_count;
};

struct host_measurement_values
{
    double seconds;
    uint64_t num_samples;
    uint64_t num_packets;
    uint64_t spp;
};

struct test_results
{
    std::vector<traffic_counter_values> traffic_counter;
    host_measurement_values host;
};

struct noc_block_endpoint
{
    std::string block_id;
    size_t port;
};

void enable_traffic_counters(uhd::property_tree::sptr tree, uhd::fs_path noc_block_root)
{
    tree->access<uint64_t>(noc_block_root / "traffic_counter/enable").set(true);
}

void disable_traffic_counters(uhd::property_tree::sptr tree, uhd::fs_path noc_block_root)
{
    tree->access<uint64_t>(noc_block_root / "traffic_counter/enable").set(false);
}

traffic_counter_values read_traffic_counters(
    uhd::property_tree::sptr tree, uhd::fs_path noc_block_root)
{
    uhd::fs_path root = noc_block_root / "traffic_counter";

    traffic_counter_values vals;
    vals.clock_cycles = tree->access<uint64_t>(root / "bus_clock_ticks").get();

    vals.xbar_to_shell_pkt_count =
        tree->access<uint64_t>(root / "xbar_to_shell_pkt_count").get();
    vals.xbar_to_shell_xfer_count =
        tree->access<uint64_t>(root / "xbar_to_shell_xfer_count").get();

    vals.shell_to_xbar_pkt_count =
        tree->access<uint64_t>(root / "shell_to_xbar_pkt_count").get();
    vals.shell_to_xbar_xfer_count =
        tree->access<uint64_t>(root / "shell_to_xbar_xfer_count").get();

    vals.shell_to_ce_pkt_count =
        tree->access<uint64_t>(root / "shell_to_ce_pkt_count").get();
    vals.shell_to_ce_xfer_count =
        tree->access<uint64_t>(root / "shell_to_ce_xfer_count").get();

    vals.ce_to_shell_pkt_count =
        tree->access<uint64_t>(root / "ce_to_shell_pkt_count").get();
    vals.ce_to_shell_xfer_count =
        tree->access<uint64_t>(root / "ce_to_shell_xfer_count").get();

    return vals;
}

void print_traffic_counters(const traffic_counter_values& vals)
{
    std::cout << "Clock cycles:        " << vals.clock_cycles << std::endl;

    std::cout << "Xbar to shell pkt count:  " << vals.xbar_to_shell_pkt_count
              << std::endl;
    std::cout << "Xbar to shell xfer count: " << vals.xbar_to_shell_xfer_count
              << std::endl;

    std::cout << "Shell to xbar pkt count:  " << vals.shell_to_xbar_pkt_count
              << std::endl;
    std::cout << "Shell to xbar xfer count: " << vals.shell_to_xbar_xfer_count
              << std::endl;

    std::cout << "Shell to CE pkt count:    " << vals.shell_to_ce_pkt_count << std::endl;
    std::cout << "Shell to CE xfer count:   " << vals.shell_to_ce_xfer_count << std::endl;

    std::cout << "CE to shell pkt count:    " << vals.ce_to_shell_pkt_count << std::endl;
    std::cout << "CE to shell xfer count:   " << vals.ce_to_shell_xfer_count << std::endl;
}

void print_rx_statistics(const traffic_counter_values& vals, const double bus_clk_freq)
{
    const double bus_time_elapsed      = vals.clock_cycles / bus_clk_freq;
    const uint64_t num_ce_packets_read = vals.ce_to_shell_pkt_count;
    const uint64_t num_ce_samples_read =
        (vals.ce_to_shell_xfer_count - num_ce_packets_read) * 2;

    const uint64_t num_non_data_packets_read =
        vals.shell_to_xbar_pkt_count - num_ce_packets_read;
    const double rx_data_packet_ratio =
        (double)num_ce_packets_read / num_non_data_packets_read;

    const double calculated_throughput = num_ce_samples_read / bus_time_elapsed;

    std::cout << "Time elapsed:          " << bus_time_elapsed << " s" << std::endl;
    std::cout << "Samples read:          " << num_ce_samples_read << std::endl;
    std::cout << "Data packets read:     " << num_ce_packets_read << std::endl;
    std::cout << "RX data packet ratio:  " << rx_data_packet_ratio
              << " data to non-data packets" << std::endl;
    std::cout << "Calculated throughput: " << calculated_throughput / 1e6 << " Msps"
              << std::endl;
}

void print_tx_statistics(const traffic_counter_values& vals, const double bus_clk_freq)
{
    const double bus_time_elapsed         = vals.clock_cycles / bus_clk_freq;
    const uint64_t num_ce_packets_written = vals.shell_to_ce_pkt_count;
    const uint64_t num_ce_samples_written =
        (vals.shell_to_ce_xfer_count - num_ce_packets_written) * 2;

    const uint64_t num_non_data_packets_written =
        vals.xbar_to_shell_pkt_count - num_ce_packets_written;
    const double tx_data_packet_ratio =
        (double)num_ce_packets_written / num_non_data_packets_written;

    const double calculated_throughput = num_ce_samples_written / bus_time_elapsed;

    std::cout << "Time elapsed:          " << bus_time_elapsed << " s" << std::endl;
    std::cout << "Samples written:       " << num_ce_samples_written << std::endl;
    std::cout << "Data packets written:  " << num_ce_packets_written << std::endl;
    std::cout << "TX data packet ratio:  " << tx_data_packet_ratio
              << " data to non-data packets" << std::endl;
    std::cout << "Calculated throughput: " << calculated_throughput / 1e6 << " Msps"
              << std::endl;
}

void print_utilization_statistics(const traffic_counter_values& vals)
{
    const double rx_data_cycles =
        vals.ce_to_shell_xfer_count - vals.ce_to_shell_pkt_count;
    const double rx_idle_cycles = vals.clock_cycles - vals.shell_to_xbar_xfer_count;
    const double rx_data_header_cycles = vals.ce_to_shell_pkt_count;
    const double rx_other_cycles =
        vals.shell_to_xbar_xfer_count - vals.ce_to_shell_xfer_count;

    const double rx_data_util        = rx_data_cycles / vals.clock_cycles * 100;
    const double rx_idle_util        = rx_idle_cycles / vals.clock_cycles * 100;
    const double rx_data_header_util = rx_data_header_cycles / vals.clock_cycles * 100;
    const double rx_other_util       = rx_other_cycles / vals.clock_cycles * 100;

    std::cout << "RX utilization:" << std::endl;
    std::cout << "   data:        " << rx_data_util << " %" << std::endl;
    std::cout << "   idle:        " << rx_idle_util << " %" << std::endl;
    std::cout << "   data header: " << rx_data_header_util << " %" << std::endl;
    std::cout << "   other:       " << rx_other_util << " % (flow control, register I/O)"
              << std::endl;
    std::cout << std::endl;

    const double tx_data_cycles =
        vals.shell_to_ce_xfer_count - vals.shell_to_ce_pkt_count;
    const double tx_idle_cycles = vals.clock_cycles - vals.xbar_to_shell_xfer_count;
    const double tx_data_header_cycles = vals.shell_to_ce_pkt_count;
    const double tx_other_cycles =
        vals.xbar_to_shell_xfer_count - vals.shell_to_ce_xfer_count;

    const double tx_data_util        = tx_data_cycles / vals.clock_cycles * 100;
    const double tx_idle_util        = tx_idle_cycles / vals.clock_cycles * 100;
    const double tx_data_header_util = tx_data_header_cycles / vals.clock_cycles * 100;
    const double tx_other_util       = tx_other_cycles / vals.clock_cycles * 100;

    std::cout << "TX utilization:" << std::endl;
    std::cout << "   data:        " << tx_data_util << " %" << std::endl;
    std::cout << "   idle:        " << tx_idle_util << " %" << std::endl;
    std::cout << "   data header: " << tx_data_header_util << " %" << std::endl;
    std::cout << "   other:       " << tx_other_util << " % (flow control, register I/O)"
              << std::endl;
}

void print_rx_results(const test_results& results, double bus_clk_freq)
{
    std::cout << "------------------------------------------------------------------"
              << std::endl;
    std::cout << "------------------- Benchmarking rx stream -----------------------"
              << std::endl;
    std::cout << "------------------------------------------------------------------"
              << std::endl;
    std::cout << "RX samples per packet: " << results.host.spp << std::endl;
    std::cout << std::endl;

    for (const auto& tc : results.traffic_counter) {
        std::cout << "------------------ Traffic counter values ------------------------"
                  << std::endl;
        print_traffic_counters(tc);
        std::cout << std::endl;

        std::cout << "------------ Values calculated from traffic counters -------------"
                  << std::endl;
        print_rx_statistics(tc, bus_clk_freq);
        std::cout << std::endl;
        print_utilization_statistics(tc);
        std::cout << std::endl;
    }

    std::cout << "--------------------- Host measurements --------------------------"
              << std::endl;
    std::cout << "Time elapsed:          " << results.host.seconds << " s" << std::endl;
    std::cout << "Samples read:          " << results.host.num_samples << std::endl;
    std::cout << "Data packets read:     " << results.host.num_packets << std::endl;
    std::cout << "Calculated throughput: "
              << results.host.num_samples / results.host.seconds / 1e6 << " Msps"
              << std::endl;
}

void print_tx_results(const test_results& results, const double bus_clk_freq)
{
    std::cout << "------------------------------------------------------------------"
              << std::endl;
    std::cout << "------------------- Benchmarking tx stream -----------------------"
              << std::endl;
    std::cout << "------------------------------------------------------------------"
              << std::endl;
    std::cout << "TX samples per packet: " << results.host.spp << std::endl;
    std::cout << std::endl;

    for (const auto& tc : results.traffic_counter) {
        std::cout << "------------------ Traffic counter values ------------------------"
                  << std::endl;
        print_traffic_counters(tc);

        std::cout << std::endl;
        std::cout << "------------ Values calculated from traffic counters -------------"
                  << std::endl;
        print_tx_statistics(tc, bus_clk_freq);
        std::cout << std::endl;
        print_utilization_statistics(tc);
        std::cout << std::endl;
    }

    std::cout << "--------------------- Host measurements --------------------------"
              << std::endl;
    std::cout << "Time elapsed:          " << results.host.seconds << " s" << std::endl;
    std::cout << "Samples written:       " << results.host.num_samples << std::endl;
    std::cout << "Data packets written:  " << results.host.num_packets << std::endl;
    std::cout << "Calculated throughput: "
              << results.host.num_samples / results.host.seconds / 1e6 << " Msps"
              << std::endl;
}

void configure_ddc(uhd::device3::sptr usrp, const std::string& ddcid, double ddc_decim)
{
    auto ddc_ctrl = usrp->get_block_ctrl<uhd::rfnoc::ddc_block_ctrl>(ddcid);
    ddc_ctrl->set_arg<double>("input_rate", 1, 0);
    ddc_ctrl->set_arg<double>("output_rate", 1 / ddc_decim, 0);
    double actual_rate = ddc_ctrl->get_arg<double>("output_rate", 0);
    std::cout << "Actual DDC decimation: " << 1 / actual_rate << std::endl;
}

void configure_duc(uhd::device3::sptr usrp, const std::string& ducid, double duc_interp)
{
    auto duc_ctrl = usrp->get_block_ctrl<uhd::rfnoc::duc_block_ctrl>(ducid);
    duc_ctrl->set_arg<double>("output_rate", 1, 0);
    duc_ctrl->set_arg<double>("input_rate", 1 / duc_interp, 0);
    double actual_rate = duc_ctrl->get_arg<double>("input_rate", 0);
    std::cout << "Actual DUC interpolation: " << 1 / actual_rate << std::endl;
}

uhd::rx_streamer::sptr configure_rx_streamer(uhd::device3::sptr usrp,
    const std::string null_id,
    const std::string splitter_id,
    const std::vector<std::vector<noc_block_endpoint>>& noc_blocks,
    const size_t spp,
    const std::string& format)
{
    std::cout << "Configuring rx stream with" << std::endl;
    std::cout << "    Null ID: " << null_id << std::endl;
    if (not splitter_id.empty()) {
        std::cout << "    Splitter ID: " << splitter_id << std::endl;
    }
    for (size_t i = 0; i < noc_blocks.size(); i++) {
        if (noc_blocks[i].size() > 0) {
            std::cout << "    Channel " << i << std::endl;
            for (const auto& b : noc_blocks[i]) {
                std::cout << "        Block ID: " << b.block_id << ", port: " << b.port
                          << std::endl;
            }
        }
    }

    auto rx_graph = usrp->create_graph("rx_graph");
    uhd::stream_args_t stream_args(format, "sc16");
    std::vector<size_t> channels;
    for (size_t i = 0; i < noc_blocks.size(); i++) {
        channels.push_back(i);
    }
    stream_args.channels = channels;

    std::vector<noc_block_endpoint> endpoints;

    if (noc_blocks.size() == 1) {
        // No splitter required
        endpoints = {{null_id, 0}};
    } else {
        // Connect to splitter
        rx_graph->connect(null_id, splitter_id);

        for (size_t i = 0; i < noc_blocks.size(); i++) {
            endpoints.push_back({splitter_id, i});
        }
    }

    for (size_t i = 0; i < noc_blocks.size(); i++) {
        std::string endpoint_id = endpoints[i].block_id;
        size_t endpoint_port    = endpoints[i].port;

        for (size_t j = 0; j < noc_blocks[i].size(); j++) {
            const auto& noc_block = noc_blocks[i][j];

            rx_graph->connect(
                endpoint_id, endpoint_port, noc_block.block_id, noc_block.port);

            endpoint_id   = noc_block.block_id;
            endpoint_port = noc_block.port;
        }

        const std::string id_str   = str(boost::format("block_id%d") % i);
        const std::string port_str = str(boost::format("block_port%d") % i);
        stream_args.args[id_str]   = endpoint_id;
        stream_args.args[port_str] = str(boost::format("%d") % endpoint_port);
    }

    if (spp != 0) {
        stream_args.args["spp"] = std::to_string(spp);
    }
    uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);

    // Configure null source
    auto null_ctrl = usrp->get_block_ctrl<uhd::rfnoc::null_block_ctrl>(null_id);
    const size_t otw_bytes_per_item =
        uhd::convert::get_bytes_per_item(stream_args.otw_format);
    const size_t samps_per_packet = rx_stream->get_max_num_samps();
    null_ctrl->set_arg<int>("line_rate", 0);
    null_ctrl->set_arg<int>("bpp", samps_per_packet * otw_bytes_per_item);

    return rx_stream;
}

test_results benchmark_rx_streamer(uhd::device3::sptr usrp,
    uhd::rx_streamer::sptr rx_stream,
    const std::string& nullid,
    const double duration,
    const std::string& format)
{
    auto null_src_ctrl = usrp->get_block_ctrl<uhd::rfnoc::null_block_ctrl>(nullid);

    // Allocate buffer
    const size_t cpu_bytes_per_item = uhd::convert::get_bytes_per_item(format);
    const size_t samps_per_packet   = rx_stream->get_max_num_samps();

    const size_t num_channels = rx_stream->get_num_channels();
    std::vector<std::vector<uint8_t>> buffer(num_channels);
    std::vector<void*> buffers;
    for (size_t i = 0; i < num_channels; i++) {
        buffer[i].resize(samps_per_packet * cpu_bytes_per_item);
        buffers.push_back(&buffer[i].front());
    }

    enable_traffic_counters(
        usrp->get_tree(), null_src_ctrl->get_block_id().get_tree_root());

    // Stream some packets
    uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
    stream_cmd.stream_now = true;
    null_src_ctrl->issue_stream_cmd(stream_cmd);

    const std::chrono::duration<double> requested_duration(duration);
    const auto start_time = std::chrono::steady_clock::now();
    auto current_time     = start_time;

    uint64_t num_rx_samps   = 0;
    uint64_t num_rx_packets = 0;
    uhd::rx_metadata_t md;

    while (current_time - start_time < requested_duration) {
        const size_t packets_per_iteration = 1000;

        for (size_t i = 0; i < packets_per_iteration; i++) {
            num_rx_samps += rx_stream->recv(buffers, samps_per_packet, md, 1.0);

            if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
                if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
                    continue;
                } else if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
                    std::cout << "[ERROR] Receive timeout, aborting." << std::endl;
                    break;
                } else {
                    std::cout << std::string("[ERROR] Receiver error: ") << md.strerror()
                              << std::endl;
                    break;
                }
            }
        }
        num_rx_packets += packets_per_iteration;
        current_time = std::chrono::steady_clock::now();
    }

    disable_traffic_counters(
        usrp->get_tree(), null_src_ctrl->get_block_id().get_tree_root());

    null_src_ctrl->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);

    test_results results;
    results.traffic_counter.push_back(read_traffic_counters(
        usrp->get_tree(), null_src_ctrl->get_block_id().get_tree_root()));

    const std::chrono::duration<double> elapsed_time(current_time - start_time);
    results.host.seconds     = elapsed_time.count();
    results.host.num_samples = num_rx_samps;
    results.host.num_packets = num_rx_packets;
    results.host.spp         = samps_per_packet;

    return results;
}

uhd::tx_streamer::sptr configure_tx_streamer(uhd::device3::sptr usrp,
    const std::vector<std::vector<noc_block_endpoint>> noc_blocks,
    const size_t spp,
    const std::string& format)
{
    std::cout << "Configuring tx stream with" << std::endl;
    for (size_t i = 0; i < noc_blocks.size(); i++) {
        std::cout << "    Channel " << i << std::endl;
        for (const auto& b : noc_blocks[i]) {
            std::cout << "        Block ID: " << b.block_id << ", port: " << b.port
                      << std::endl;
        }
    }

    // Configure rfnoc
    auto tx_graph = usrp->create_graph("tx_graph");
    uhd::stream_args_t stream_args(format, "sc16");
    std::vector<size_t> channels;
    for (size_t i = 0; i < noc_blocks.size(); i++) {
        channels.push_back(i);
    }
    stream_args.channels = channels;

    for (size_t i = 0; i < noc_blocks.size(); i++) {
        std::string endpoint_id;
        size_t endpoint_port;

        for (size_t j = 0; j < noc_blocks[i].size(); j++) {
            const auto& noc_block = noc_blocks[i][j];

            if (j != 0) {
                tx_graph->connect(
                    noc_block.block_id, noc_block.port, endpoint_id, endpoint_port);
            }
            endpoint_id   = noc_block.block_id;
            endpoint_port = noc_block.port;
        }

        const std::string id_str   = str(boost::format("block_id%d") % i);
        const std::string port_str = str(boost::format("block_port%d") % i);
        stream_args.args[id_str]   = endpoint_id;
        stream_args.args[port_str] = str(boost::format("%d") % endpoint_port);
    }

    // Configure streamer
    if (spp != 0) {
        stream_args.args["spp"] = std::to_string(spp);
    }
    uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);

    return tx_stream;
}

test_results benchmark_tx_streamer(uhd::device3::sptr usrp,
    uhd::tx_streamer::sptr tx_stream,
    const std::vector<std::string>& null_ids,
    const double duration,
    const std::string& format)
{
    std::vector<std::shared_ptr<uhd::rfnoc::null_block_ctrl>> null_ctrls;
    for (const auto& id : null_ids) {
        null_ctrls.push_back(usrp->get_block_ctrl<uhd::rfnoc::null_block_ctrl>(id));
    }

    // Allocate buffer
    const size_t cpu_bytes_per_item = uhd::convert::get_bytes_per_item(format);
    const size_t samps_per_packet   = tx_stream->get_max_num_samps();

    const size_t num_channels = tx_stream->get_num_channels();
    std::vector<std::vector<uint8_t>> buffer(num_channels);
    std::vector<void*> buffers;
    for (size_t i = 0; i < num_channels; i++) {
        buffer[i].resize(samps_per_packet * cpu_bytes_per_item);
        buffers.push_back(&buffer[i].front());
    }

    for (auto& null_ctrl : null_ctrls) {
        enable_traffic_counters(
            usrp->get_tree(), null_ctrl->get_block_id().get_tree_root());
    }

    // Stream some packets
    uint64_t num_tx_samps   = 0;
    uint64_t num_tx_packets = 0;
    uhd::tx_metadata_t md;

    const std::chrono::duration<double> requested_duration(duration);
    const auto start_time = std::chrono::steady_clock::now();
    auto current_time     = start_time;

    while (current_time - start_time < requested_duration) {
        const size_t packets_per_iteration = 1000;

        for (size_t i = 0; i < packets_per_iteration; i++) {
            num_tx_samps += tx_stream->send(buffers, samps_per_packet, md);
        }

        num_tx_packets += packets_per_iteration;
        current_time = std::chrono::steady_clock::now();
    }

    for (auto& null_ctrl : null_ctrls) {
        disable_traffic_counters(
            usrp->get_tree(), null_ctrl->get_block_id().get_tree_root());
    }

    // Stop
    md.end_of_burst = true;
    tx_stream->send(buffers, 0, md);

    test_results results;
    for (auto& null_ctrl : null_ctrls) {
        results.traffic_counter.push_back(read_traffic_counters(
            usrp->get_tree(), null_ctrl->get_block_id().get_tree_root()));
    }

    const std::chrono::duration<double> elapsed_time(current_time - start_time);
    results.host.seconds     = elapsed_time.count();
    results.host.num_samples = num_tx_samps;
    results.host.num_packets = num_tx_packets;
    results.host.spp         = samps_per_packet;

    return results;
}

std::vector<std::string> parse_csv(const std::string& list)
{
    std::vector<std::string> result;
    std::istringstream input(list);

    std::string str;
    while (std::getline(input, str, ',')) {
        boost::algorithm::trim_all(str);
        if (not str.empty()) {
            result.push_back(str);
        }
    }
    return result;
}

std::deque<noc_block_endpoint> create_noc_block_queue(const size_t num_blocks,
    const std::string& user_override_id_list,
    const std::string& prefix,
    const size_t num_ports)
{
    const std::vector<std::string> overrides = parse_csv(user_override_id_list);
    std::deque<noc_block_endpoint> result;

    for (size_t i = 0; i < num_blocks; i++) {
        if (i < overrides.size()) {
            result.push_back({overrides[i], (i % num_ports)});
        } else {
            const std::string format_str = prefix + "_%d";
            noc_block_endpoint block     = {
                str(boost::format(format_str) % (i / num_ports)), i % num_ports};
            result.push_back(block);
        }
    }
    return result;
}

int UHD_SAFE_MAIN(int argc, char* argv[])
{
    // Variables to be set by po
    bool dma_fifo, ddc, duc, tx_loopback_fifo, rx_loopback_fifo;
    std::string args, format;
    std::string null_ids, fifo_ids, ddc_ids, duc_ids, split_stream_ids;
    double duration;
    double ddc_decim, duc_interp, bus_clk_freq;
    size_t spp;
    size_t num_tx_streamers, num_rx_streamers, num_tx_channels, num_rx_channels;

    // Setup the program options
    po::options_description desc("Allowed options");
    // clang-format off
    desc.add_options()
        ("help", "help message")
        ("args",   po::value<std::string>(&args)->default_value(""), "single uhd device address args")
        ("num_tx_streamers", po::value<size_t>(&num_tx_streamers)->default_value(0), "number of tx streamers to benchmark")
        ("num_rx_streamers", po::value<size_t>(&num_rx_streamers)->default_value(0), "number of rx streamers to benchmark")
        ("num_tx_channels", po::value<size_t>(&num_tx_channels)->default_value(1), "number of tx channels per streamer")
        ("num_rx_channels", po::value<size_t>(&num_rx_channels)->default_value(1), "number of rx channels per streamer")
        ("duration", po::value<double>(&duration)->default_value(10.0), "duration for the test in seconds")
        ("spp", po::value<size_t>(&spp)->default_value(0), "samples per packet (on FPGA and wire)")
        ("format", po::value<std::string>(&format)->default_value("sc16"), "host sample type: sc16, fc32, or fc64")
        ("bus_clk_freq", po::value<double>(&bus_clk_freq)->default_value(187.5e6), "bus clock frequency for throughput calculation (default: 187.5e6)")
        ("dma_fifo", po::bool_switch(&dma_fifo)->default_value(false), "whether to insert a DMA FIFO in the streaming path")
        ("tx_loopback_fifo", po::bool_switch(&tx_loopback_fifo)->default_value(false), "whether to insert a loopback FIFO in the tx streaming path")
        ("rx_loopback_fifo", po::bool_switch(&rx_loopback_fifo)->default_value(false), "whether to insert a loopback FIFO in the rx streaming path")
        ("ddc", po::bool_switch(&ddc)->default_value(false), "whether to insert a DDC in the rx streaming path")
        ("duc", po::bool_switch(&duc)->default_value(false), "whether to insert a DUC in the tx streaming path")
        ("ddc_decim", po::value<double>(&ddc_decim)->default_value(1), "DDC decimation, between 1 and max decimation (default: 1, no decimation)")
        ("duc_interp", po::value<double>(&duc_interp)->default_value(1), "DUC interpolation, between 1 and max interpolation (default: 1, no interpolation)")
        ("null_ids", po::value<std::string>(&null_ids)->default_value(""), "optional: list of block IDs for the null sources")
        ("fifo_ids", po::value<std::string>(&fifo_ids)->default_value(""), "optional: list of block IDs for the loopback FIFOs")
        ("ddc_ids", po::value<std::string>(&ddc_ids)->default_value(""), "optional: list of block IDs for the DDCs")
        ("duc_ids", po::value<std::string>(&duc_ids)->default_value(""), "optional: list of block IDs for the DUCs")
        ("split_stream_ids", po::value<std::string>(&split_stream_ids)->default_value(""), "optional: list of block IDs for rx data splitters")
    ;
    // clang-format on
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    // Print the help message
    const size_t num_streamers = num_rx_streamers + num_tx_streamers;

    if (vm.count("help") or (num_streamers == 0)) {
        std::cout << boost::format("UHD - Benchmark Streamer") << std::endl;
        std::cout
            << "    Benchmark streamer connects a null sink/source to a streamer and\n"
               "    measures maximum throughput. You can benchmark the operation of\n"
               "    multiple streamers concurrently. Each streamer executes in a\n"
               "    separate thread. The FPGA image on the device must contain a\n"
               "    null source for each channel in the test.\n"
               "    Benchmarks of common use-cases:\n"
               "    Specify --num_tx_streamers=1 to test tx streamer.\n"
               "    Specify --num_rx_streamers=1 to test rx streamer.\n"
               "    Specify --num_tx_streamers=1 --num_tx_channels-2 to test tx\n"
               "    streamer with two channels.\n"
               "    Specify --num_rx_streamers=1 --num_rx_channels=2 to test rx\n"
               "    rx streamer with two channels. This requires a split_stream\n"
               "    RFNOC block.\n"
               "    Specify --num_rx_streamers=1 --num_tx_streams=1 to test full\n"
               "    duplex data transfer.\n"
               "    Specify --num_rx_streamers=2 --num_rx_streams=2 to test full\n"
               "    duplex data tranfser with two streamers in each direction.\n"
               "    Benchmarks streamer allows DMA FIFOs, loopback FIFOs, DDCs, and\n"
               "    DUCs to be added to the data path. Enable these by setting the\n"
               "    corresponding Boolean option to true. The order of the blocks\n"
               "    is fixed. If present, the DMA FIFO is connected to the host bus\n"
               "    interface, followed by the loopback FIFOs, and then DUC on a tx\n"
               "    stream or a DDC on an rx stream.\n"
               "    Note: for full duplex tests, if a DMA FIFO is specified, it is\n"
               "    inserted in the tx data path only.\n"
               "    Testing multiple rx channels in a single streamer requires a\n"
               "    split stream RFNOC block with the number of outputs equal to the\n"
               "    number of channels. Each streamer connects to a single null\n"
               "    source through the split stream block.\n"
               "    In order to allow testing of blocks with different compilation\n"
               "    parameters, such as the block FIFO size, this example provides\n"
               "    options to override RFNOC block IDs. Block IDs can be specified\n"
               "    as a comma-delimited list for each type of block. If the block\n"
               "    type is used in both tx and rx streams, block IDs are assigned\n"
               "    to tx streams first, followed by rx streams. For example, a test\n"
               "    with two tx and two rx streams will assign the first two IDs in\n"
               "    the null_ids list to the tx streams and the next two IDs to the\n"
               "    rx streams.\n"
            << std::endl
            << desc << std::endl;
        return EXIT_SUCCESS;
    }

    std::cout << boost::format("Creating the usrp device with: %s...") % args
              << std::endl;
    uhd::device3::sptr usrp = uhd::device3::make(args);

    // For each block type, calculate the number of blocks needed by the test
    // and create block IDs, accounting for user overrides in program options.
    // Note that for null sources, rx only uses one NULL block per streamer
    // rather than one per channel, since the test uses split_stream blocks to
    // ensure packets on the same streamer have matching timestamps. Also, for
    // DMA FIFOs, if the test contains both tx and rx channels, we only insert
    // the FIFOs in the tx data path since that is the primary use-case.
    const size_t total_tx_channels   = num_tx_streamers * num_tx_channels;
    const size_t total_rx_channels   = num_rx_streamers * num_rx_channels;
    const size_t num_null_blocks     = total_tx_channels + num_rx_streamers;
    const size_t num_duc_blocks      = duc ? total_tx_channels : 0;
    const size_t num_ddc_blocks      = ddc ? total_rx_channels : 0;
    const size_t num_tx_fifo_blocks  = tx_loopback_fifo ? total_tx_channels : 0;
    const size_t num_rx_fifo_blocks  = rx_loopback_fifo ? total_rx_channels : 0;
    const size_t num_fifo_blocks     = num_tx_fifo_blocks + num_rx_fifo_blocks;
    const size_t num_splitter_blocks = num_rx_channels > 1 ? num_rx_streamers : 0;

    size_t num_dma_fifo_blocks = 0;
    bool tx_dma_fifo           = false;
    bool rx_dma_fifo           = false;

    if (dma_fifo) {
        if (total_tx_channels == 0) {
            num_dma_fifo_blocks = total_rx_channels;
            rx_dma_fifo         = true;
        } else {
            num_dma_fifo_blocks = total_tx_channels;
            tx_dma_fifo         = true;
        }
    }

    // Create block IDs
    std::deque<noc_block_endpoint> null_blocks =
        create_noc_block_queue(num_null_blocks, null_ids, "0/NullSrcSink", 1);

    std::deque<noc_block_endpoint> duc_blocks =
        create_noc_block_queue(num_duc_blocks, duc_ids, "0/DUC", 1);

    std::deque<noc_block_endpoint> ddc_blocks =
        create_noc_block_queue(num_ddc_blocks, ddc_ids, "0/DDC", 1);

    std::deque<noc_block_endpoint> fifo_blocks =
        create_noc_block_queue(num_fifo_blocks, fifo_ids, "0/FIFO", 1);

    std::deque<noc_block_endpoint> dma_fifo_blocks =
        create_noc_block_queue(num_dma_fifo_blocks, "", "0/DmaFIFO", 2);

    std::deque<noc_block_endpoint> splitter_blocks =
        create_noc_block_queue(num_splitter_blocks, split_stream_ids, "0/SplitStream", 1);

    // Configure all streamers
    usrp->clear();

    std::vector<uhd::tx_streamer::sptr> tx_streamers;
    std::vector<std::vector<std::string>> tx_null_ids;

    for (size_t i = 0; i < num_tx_streamers; i++) {
        std::vector<std::vector<noc_block_endpoint>> blocks(num_tx_channels);
        std::vector<std::string> null_ids;

        for (size_t ch = 0; ch < num_tx_channels; ch++) {
            // Store the null ids to read traffic counters later
            null_ids.push_back(null_blocks.front().block_id);

            // Add block IDs to create the graph for each channel
            blocks[ch].push_back(null_blocks.front());
            null_blocks.pop_front();
            if (duc) {
                configure_duc(usrp, duc_blocks.front().block_id, duc_interp);
                blocks[ch].push_back(duc_blocks.front());
                duc_blocks.pop_front();
            }
            if (tx_loopback_fifo) {
                blocks[ch].push_back(fifo_blocks.front());
                fifo_blocks.pop_front();
            }
            if (tx_dma_fifo) {
                blocks[ch].push_back(dma_fifo_blocks.front());
                dma_fifo_blocks.pop_front();
            }
        };

        tx_streamers.push_back(configure_tx_streamer(usrp, blocks, spp, format));

        tx_null_ids.push_back(null_ids);
    }

    std::vector<uhd::rx_streamer::sptr> rx_streamers;
    std::vector<std::string> rx_null_ids;

    for (size_t i = 0; i < num_rx_streamers; i++) {
        std::vector<std::vector<noc_block_endpoint>> blocks(num_rx_channels);

        for (size_t ch = 0; ch < num_rx_channels; ch++) {
            if (ddc) {
                configure_ddc(usrp, ddc_blocks.front().block_id, ddc_decim);
                blocks[ch].push_back(ddc_blocks.front());
                ddc_blocks.pop_front();
            }
            if (rx_loopback_fifo) {
                blocks[ch].push_back(fifo_blocks.front());
                fifo_blocks.pop_front();
            }
            if (rx_dma_fifo) {
                blocks[ch].push_back(dma_fifo_blocks.front());
                dma_fifo_blocks.pop_front();
            }
        };

        std::string splitter_id;
        if (num_rx_channels > 1) {
            splitter_id = splitter_blocks.front().block_id;
            splitter_blocks.pop_front();
        }

        rx_streamers.push_back(configure_rx_streamer(
            usrp, null_blocks.front().block_id, splitter_id, blocks, spp, format));

        // Store the null ids to read traffic counters later
        rx_null_ids.push_back(null_blocks.front().block_id);
        null_blocks.pop_front();
    }

    // Start threads
    std::vector<std::thread> threads;
    std::vector<test_results> tx_results(num_tx_streamers);
    for (size_t i = 0; i < num_tx_streamers; i++) {
        test_results& results             = tx_results[i];
        uhd::tx_streamer::sptr streamer   = tx_streamers[i];
        std::vector<std::string> null_ids = tx_null_ids[i];
        threads.push_back(
            std::thread([&results, usrp, streamer, null_ids, duration, format]() {
                results =
                    benchmark_tx_streamer(usrp, streamer, null_ids, duration, format);
            }));
    }

    std::vector<test_results> rx_results(num_rx_streamers);
    for (size_t i = 0; i < num_rx_streamers; i++) {
        test_results& results           = rx_results[i];
        uhd::rx_streamer::sptr streamer = rx_streamers[i];
        std::string null_id             = rx_null_ids[i];
        threads.push_back(
            std::thread([&results, usrp, streamer, null_id, duration, format]() {
                results =
                    benchmark_rx_streamer(usrp, streamer, null_id, duration, format);
            }));
    }

    // Join threads
    for (std::thread& t : threads) {
        t.join();
    }

    // Print results
    for (const test_results& result : tx_results) {
        print_tx_results(result, bus_clk_freq);
    }

    for (const test_results& result : rx_results) {
        print_rx_results(result, bus_clk_freq);
    }

    return EXIT_SUCCESS;
}