1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/device3.hpp>
#include <uhd/convert.hpp>
#include <uhd/utils/thread.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/rfnoc/block_ctrl.hpp>
#include <uhd/rfnoc/null_block_ctrl.hpp>
#include <uhd/rfnoc/ddc_block_ctrl.hpp>
#include <uhd/rfnoc/duc_block_ctrl.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <iostream>
#include <iomanip>
#include <thread>
#include <chrono>
namespace po = boost::program_options;
void enable_traffic_counters(
uhd::property_tree::sptr tree,
uhd::fs_path noc_block_root
) {
tree->access<uint64_t>(noc_block_root/"traffic_counter/enable").set(true);
}
void disable_traffic_counters(
uhd::property_tree::sptr tree,
uhd::fs_path noc_block_root
) {
tree->access<uint64_t>(noc_block_root/"traffic_counter/enable").set(false);
}
struct traffic_counter_values {
uint64_t clock_cycles;
uint64_t xbar_to_shell_last;
uint64_t xbar_to_shell_valid;
uint64_t xbar_to_shell_ready;
uint64_t shell_to_xbar_last;
uint64_t shell_to_xbar_valid;
uint64_t shell_to_xbar_ready;
uint64_t shell_to_ce_last;
uint64_t shell_to_ce_valid;
uint64_t shell_to_ce_ready;
uint64_t ce_to_shell_last;
uint64_t ce_to_shell_valid;
uint64_t ce_to_shell_ready;
};
traffic_counter_values read_traffic_counters(
uhd::property_tree::sptr tree,
uhd::fs_path noc_block_root
) {
uhd::fs_path root = noc_block_root/"traffic_counter";
traffic_counter_values vals;
vals.clock_cycles = tree->access<uint64_t>(root/"bus_clock_ticks").get();
vals.xbar_to_shell_last = tree->access<uint64_t>(root/"xbar_to_shell_last").get();
vals.xbar_to_shell_valid = tree->access<uint64_t>(root/"xbar_to_shell_valid").get();
vals.xbar_to_shell_ready = tree->access<uint64_t>(root/"xbar_to_shell_ready").get();
vals.shell_to_xbar_last = tree->access<uint64_t>(root/"shell_to_xbar_last").get();
vals.shell_to_xbar_valid = tree->access<uint64_t>(root/"shell_to_xbar_valid").get();
vals.shell_to_xbar_ready = tree->access<uint64_t>(root/"shell_to_xbar_ready").get();
vals.shell_to_ce_last = tree->access<uint64_t>(root/"shell_to_ce_last").get();
vals.shell_to_ce_valid = tree->access<uint64_t>(root/"shell_to_ce_valid").get();
vals.shell_to_ce_ready = tree->access<uint64_t>(root/"shell_to_ce_ready").get();
vals.ce_to_shell_last = tree->access<uint64_t>(root/"ce_to_shell_last").get();
vals.ce_to_shell_valid = tree->access<uint64_t>(root/"ce_to_shell_valid").get();
vals.ce_to_shell_ready = tree->access<uint64_t>(root/"ce_to_shell_ready").get();
return vals;
}
void print_traffic_counters(
const traffic_counter_values& vals
) {
std::cout << "Clock cycles: " << vals.clock_cycles << std::endl;
std::cout << "Xbar to shell last: " << vals.xbar_to_shell_last << std::endl;
std::cout << "Xbar to shell valid: " << vals.xbar_to_shell_valid << std::endl;
std::cout << "Xbar to shell ready: " << vals.xbar_to_shell_ready << std::endl;
std::cout << "Shell to xbar last: " << vals.shell_to_xbar_last << std::endl;
std::cout << "Shell to xbar valid: " << vals.shell_to_xbar_valid << std::endl;
std::cout << "Shell to xbar ready: " << vals.shell_to_xbar_ready << std::endl;
std::cout << "Shell to CE last: " << vals.shell_to_ce_last << std::endl;
std::cout << "Shell to CE valid: " << vals.shell_to_ce_valid << std::endl;
std::cout << "Shell to CE ready: " << vals.shell_to_ce_ready << std::endl;
std::cout << "CE to shell last: " << vals.ce_to_shell_last << std::endl;
std::cout << "CE to shell valid: " << vals.ce_to_shell_valid << std::endl;
std::cout << "CE to shell ready: " << vals.ce_to_shell_ready << std::endl;
}
void print_rx_statistics(
const traffic_counter_values& vals,
const double bus_clk_freq
) {
double bus_time_elapsed = vals.clock_cycles / bus_clk_freq;
uint64_t num_ce_packets_read = vals.ce_to_shell_last;
uint64_t num_ce_samples_read = (vals.ce_to_shell_valid - num_ce_packets_read)*2;
uint64_t num_non_data_packets_read = vals.shell_to_xbar_last - num_ce_packets_read;
double rx_data_packet_ratio = (double)num_ce_packets_read/num_non_data_packets_read;
double calculated_throughput = num_ce_samples_read/bus_time_elapsed;
std::cout << "Time elapsed: " << bus_time_elapsed << " s" << std::endl;
std::cout << "Samples read: " << num_ce_samples_read << std::endl;
std::cout << "Data packets read: " << num_ce_packets_read << std::endl;
std::cout << "RX data packet ratio: " << rx_data_packet_ratio << " data to non-data packets" << std::endl;
std::cout << "Calculated throughput: " << calculated_throughput/1e6 << " Msps" << std::endl;
}
void print_tx_statistics(
const traffic_counter_values& vals,
const double bus_clk_freq
) {
double bus_time_elapsed = vals.clock_cycles / bus_clk_freq;
uint64_t num_ce_packets_written = vals.shell_to_ce_last;
uint64_t num_ce_samples_written = (vals.shell_to_ce_valid - num_ce_packets_written)*2;
uint64_t num_non_data_packets_written = vals.xbar_to_shell_last - num_ce_packets_written;
double tx_data_packet_ratio = (double)num_ce_packets_written/num_non_data_packets_written;
double calculated_throughput = num_ce_samples_written/bus_time_elapsed;
std::cout << "Time elapsed: " << bus_time_elapsed << " s" << std::endl;
std::cout << "Samples written: " << num_ce_samples_written << std::endl;
std::cout << "Data packets written: " << num_ce_packets_written << std::endl;
std::cout << "TX data packet ratio: " << tx_data_packet_ratio << " data to non-data packets" << std::endl;
std::cout << "Calculated throughput: " << calculated_throughput/1e6 << " Msps" << std::endl;
}
void print_utilization_statistics(
const traffic_counter_values& vals
) {
double rx_data_cycles = vals.ce_to_shell_valid - vals.ce_to_shell_last;
double rx_idle_cycles = vals.clock_cycles - vals.shell_to_xbar_valid;
double rx_data_header_cycles = vals.ce_to_shell_last;
double rx_other_cycles = vals.shell_to_xbar_valid - vals.ce_to_shell_valid;
double rx_data_util = rx_data_cycles / vals.clock_cycles*100;
double rx_idle_util = rx_idle_cycles / vals.clock_cycles*100;
double rx_data_header_util = rx_data_header_cycles / vals.clock_cycles * 100;
double rx_other_util = rx_other_cycles / vals.clock_cycles * 100;
std::cout << "RX utilization:" << std::endl;
std::cout << " data: " << rx_data_util << " %" << std::endl;
std::cout << " idle: " << rx_idle_util << " %" << std::endl;
std::cout << " data header: " << rx_data_header_util << " %" << std::endl;
std::cout << " other: " << rx_other_util << " % (flow control, register I/O)" << std::endl;
std::cout << std::endl;
double tx_data_cycles = vals.shell_to_ce_valid - vals.shell_to_ce_last;
double tx_idle_cycles = vals.clock_cycles - vals.xbar_to_shell_valid;
double tx_data_header_cycles = vals.shell_to_ce_last;
double tx_other_cycles = vals.xbar_to_shell_valid - vals.shell_to_ce_valid;
double tx_data_util = tx_data_cycles / vals.clock_cycles*100;
double tx_idle_util = tx_idle_cycles / vals.clock_cycles*100;
double tx_data_header_util = tx_data_header_cycles / vals.clock_cycles * 100;
double tx_other_util = tx_other_cycles / vals.clock_cycles * 100;
std::cout << "TX utilization:" << std::endl;
std::cout << " data: " << tx_data_util << " %" << std::endl;
std::cout << " idle: " << tx_idle_util << " %" << std::endl;
std::cout << " data header: " << tx_data_header_util << " %" << std::endl;
std::cout << " other: " << tx_other_util << " % (flow control, register I/O)" << std::endl;
}
void benchmark_rx_streamer(
uhd::device3::sptr usrp,
const std::string& nullid,
const std::string& fifoid,
const std::string& ddcid,
const double ddc_decim,
const double duration,
const size_t spp,
const std::string& format,
const double bus_clk_freq
) {
usrp->clear();
// Configure rfnoc
std::string endpoint_id = nullid;
auto rx_graph = usrp->create_graph("rx_graph");
if (not ddcid.empty()) {
rx_graph->connect(endpoint_id, ddcid);
endpoint_id = ddcid;
}
if (not fifoid.empty()) {
rx_graph->connect(endpoint_id, fifoid);
endpoint_id = fifoid;
}
// Configure streamer
uhd::stream_args_t stream_args(format, "sc16");
stream_args.args["block_id"] = endpoint_id;
if (spp != 0) {
stream_args.args["spp"] = std::to_string(spp);
}
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
// Allocate buffer
const size_t cpu_bytes_per_item = uhd::convert::get_bytes_per_item(stream_args.cpu_format);
const size_t otw_bytes_per_item = uhd::convert::get_bytes_per_item(stream_args.otw_format);
const size_t samps_per_packet = rx_stream->get_max_num_samps();
std::vector<uint8_t> buffer(samps_per_packet*cpu_bytes_per_item);
std::vector<void *> buffers;
buffers.push_back(&buffer.front());
// Configure null source
auto null_src_ctrl = usrp->get_block_ctrl<uhd::rfnoc::null_block_ctrl>(nullid);
null_src_ctrl->set_arg<int>("line_rate", 0);
null_src_ctrl->set_arg<int>("bpp", samps_per_packet*otw_bytes_per_item);
// Configure DDC
if (not ddcid.empty()) {
auto ddc_ctrl = usrp->get_block_ctrl<uhd::rfnoc::ddc_block_ctrl>(ddcid);
ddc_ctrl->set_arg<double>("input_rate", 1, 0);
ddc_ctrl->set_arg<double>("output_rate", 1/ddc_decim, 0);
double actual_rate = ddc_ctrl->get_arg<double>("output_rate", 0);
std::cout << "Actual DDC decimation: " << 1/actual_rate << std::endl;
}
enable_traffic_counters(
usrp->get_tree(), null_src_ctrl->get_block_id().get_tree_root());
// Stream some packets
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
stream_cmd.stream_now = true;
rx_stream->issue_stream_cmd(stream_cmd);
const std::chrono::duration<double> requested_duration(duration);
const auto start_time = std::chrono::steady_clock::now();
auto current_time = start_time;
uint64_t num_rx_samps = 0;
uint64_t num_rx_packets = 0;
uhd::rx_metadata_t md;
while (current_time - start_time < requested_duration) {
const size_t packets_per_iteration = 1000;
for (size_t i = 0; i < packets_per_iteration; i++){
num_rx_samps += rx_stream->recv(buffers, samps_per_packet, md, 1.0);
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
continue;
}
else if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
std::cout << "[ERROR] Receive timeout, aborting." << std::endl;
break;
}
else {
std::cout << std::string("[ERROR] Receiver error: ")
<< md.strerror() << std::endl;
break;
}
}
}
num_rx_packets += packets_per_iteration;
current_time = std::chrono::steady_clock::now();
}
disable_traffic_counters(
usrp->get_tree(), null_src_ctrl->get_block_id().get_tree_root());
rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
traffic_counter_values vals = read_traffic_counters(
usrp->get_tree(), null_src_ctrl->get_block_id().get_tree_root());
std::cout << "------------------------------------------------------------------" << std::endl;
std::cout << "------------------- Benchmarking rx stream -----------------------" << std::endl;
std::cout << "------------------------------------------------------------------" << std::endl;
std::cout << "RX samples per packet: " << samps_per_packet << std::endl;
std::cout << std::endl;
std::cout << "------------------ Traffic counter values ------------------------" << std::endl;
print_traffic_counters(vals);
std::cout << std::endl;
std::cout << "------------ Values calculated from traffic counters -------------" << std::endl;
print_rx_statistics(vals, bus_clk_freq);
std::cout << std::endl;
print_utilization_statistics(vals);
const std::chrono::duration<double> elapsed_time(current_time-start_time);
std::cout << std::endl;
std::cout << "--------------------- Host measurements --------------------------" << std::endl;
std::cout << "Time elapsed: " << elapsed_time.count() << " s" << std::endl;
std::cout << "Samples read: " << num_rx_samps << std::endl;
std::cout << "Data packets read: " << num_rx_packets << std::endl;
std::cout << "Calculated throughput: " << num_rx_samps/elapsed_time.count()/1e6 << " Msps" << std::endl;
}
void benchmark_tx_streamer(
uhd::device3::sptr usrp,
const std::string& nullid,
const std::string& fifoid,
const std::string& ducid,
const double duc_interp,
const double duration,
const size_t spp,
const std::string& format,
const double bus_clk_freq
) {
usrp->clear();
// Configure rfnoc
std::string endpoint_id = nullid;
auto tx_graph = usrp->create_graph("tx_graph");
if (not ducid.empty()) {
tx_graph->connect(ducid, endpoint_id);
endpoint_id = ducid;
}
if (not fifoid.empty()) {
tx_graph->connect(fifoid, endpoint_id);
endpoint_id = fifoid;
}
// Configure streamer
uhd::stream_args_t stream_args(format, "sc16");
stream_args.args["block_id"] = endpoint_id;
if (spp != 0) {
stream_args.args["spp"] = std::to_string(spp);
}
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
// Allocate buffer
const size_t cpu_bytes_per_item = uhd::convert::get_bytes_per_item(stream_args.cpu_format);
const size_t samps_per_packet = tx_stream->get_max_num_samps();
std::vector<uint8_t> buffer(samps_per_packet*cpu_bytes_per_item);
std::vector<void *> buffers;
buffers.push_back(&buffer.front());
// Configure null sink
auto null_sink_ctrl = usrp->get_block_ctrl<uhd::rfnoc::null_block_ctrl>(nullid);
null_sink_ctrl->set_arg<int>("line_rate", 0);
// Configure DUC
if (not ducid.empty()) {
auto duc_ctrl = usrp->get_block_ctrl<uhd::rfnoc::duc_block_ctrl>(ducid);
duc_ctrl->set_arg<double>("output_rate", 1, 0);
duc_ctrl->set_arg<double>("input_rate", 1/duc_interp, 0);
double actual_rate = duc_ctrl->get_arg<double>("input_rate", 0);
std::cout << "Actual DUC interpolation: " << 1/actual_rate << std::endl;
}
enable_traffic_counters(
usrp->get_tree(), null_sink_ctrl->get_block_id().get_tree_root());
// Stream some packets
uint64_t num_tx_samps = 0;
uint64_t num_tx_packets = 0;
uhd::tx_metadata_t md;
const std::chrono::duration<double> requested_duration(duration);
const auto start_time = std::chrono::steady_clock::now();
auto current_time = start_time;
while (current_time - start_time < requested_duration) {
const size_t packets_per_iteration = 1000;
for (size_t i = 0; i < packets_per_iteration; i++){
num_tx_samps += tx_stream->send(buffers, samps_per_packet, md);
}
num_tx_packets += packets_per_iteration;
current_time = std::chrono::steady_clock::now();
}
disable_traffic_counters(
usrp->get_tree(), null_sink_ctrl->get_block_id().get_tree_root());
// Stop
md.end_of_burst = true;
tx_stream->send(buffers, 0, md);
traffic_counter_values vals = read_traffic_counters(
usrp->get_tree(), null_sink_ctrl->get_block_id().get_tree_root());
std::cout << "------------------------------------------------------------------" << std::endl;
std::cout << "------------------- Benchmarking tx stream -----------------------" << std::endl;
std::cout << "------------------------------------------------------------------" << std::endl;
std::cout << "TX samples per packet: " << samps_per_packet << std::endl;
std::cout << std::endl;
std::cout << "------------------ Traffic counter values ------------------------" << std::endl;
print_traffic_counters(vals);
std::cout << std::endl;
std::cout << "------------ Values calculated from traffic counters -------------" << std::endl;
print_tx_statistics(vals, bus_clk_freq);
std::cout << std::endl;
print_utilization_statistics(vals);
const std::chrono::duration<double> elapsed_time(current_time-start_time);
std::cout << std::endl;
std::cout << "--------------------- Host measurements --------------------------" << std::endl;
std::cout << "Time elapsed: " << elapsed_time.count() << " s" << std::endl;
std::cout << "Samples written: " << num_tx_samps << std::endl;
std::cout << "Data packets written: " << num_tx_packets << std::endl;
std::cout << "Calculated throughput: " << num_tx_samps/elapsed_time.count()/1e6 << " Msps" << std::endl;
}
int UHD_SAFE_MAIN(int argc, char *argv[]){
//variables to be set by po
std::string args, format, nullid, fifoid, ddcid, ducid;
double rx_duration, tx_duration, ddc_decim, duc_interp, bus_clk_freq;
size_t spp;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "single uhd device address args")
("rx_duration", po::value<double>(&rx_duration)->default_value(0.0), "duration for the rx test in seconds")
("tx_duration", po::value<double>(&tx_duration)->default_value(0.0), "duration for the tx test in seconds")
("spp", po::value<size_t>(&spp)->default_value(0), "samples per packet (on FPGA and wire)")
("format", po::value<std::string>(&format)->default_value("sc16"), "Host sample type: sc16, fc32, or fc64")
("nullid", po::value<std::string>(&nullid)->default_value("0/NullSrcSink_0"), "The block ID for the null source.")
("fifoid", po::value<std::string>(&fifoid)->default_value(""), "Optional: The block ID for a FIFO.")
("ddcid", po::value<std::string>(&ddcid)->default_value(""), "Optional: The block ID for a DDC for the RX stream.")
("ddc_decim", po::value<double>(&ddc_decim)->default_value(1), "DDC decimation, between 1 and max decimation (default: 1, no decimation)")
("ducid", po::value<std::string>(&ducid)->default_value(""), "Optional: The block ID for a DUC for the TX stream.")
("duc_interp", po::value<double>(&duc_interp)->default_value(1), "Rate of DUC, between 1 and max interpolation (default: 1, no interpolation)")
("bus_clk_freq", po::value<double>(&bus_clk_freq)->default_value(187.5e6), "Bus clock frequency for throughput calculation (default: 187.5e6)")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help") or (rx_duration == 0.0 and tx_duration == 0.0)) {
std::cout << boost::format("UHD - Benchmark Streamer") << std::endl;
std::cout <<
" Benchmark streamer connects a null source to a streamer and\n"
" measures maximum throughput.\n\n"
" Specify --rx_duration=<seconds> to run benchmark of rx streamer.\n"
" Specify --tx_duration=<seconds> to run benchmark of tx streamer.\n"
<< std::endl << desc << std::endl;
return EXIT_SUCCESS;
}
uhd::set_thread_priority_safe();
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::device3::sptr usrp = uhd::device3::make(args);
// Check the block ids
if (not usrp->has_block(nullid)) {
std::cout << "[Error] Device has no null source/sink block." << std::endl;
return EXIT_FAILURE;
}
if (not fifoid.empty() and not usrp->has_block(fifoid)) {
std::cout << "[Error] Invalid FIFO ID." << std::endl;
return EXIT_FAILURE;
}
if (not ddcid.empty() and not usrp->has_block(ddcid)) {
std::cout << "[Error] Invalid DDC ID." << std::endl;
return EXIT_FAILURE;
}
if (rx_duration != 0.0) {
benchmark_rx_streamer(usrp, nullid, fifoid, ddcid, ddc_decim,
rx_duration, spp, format, bus_clk_freq);
}
if (tx_duration != 0.0) {
benchmark_tx_streamer(usrp, nullid, fifoid, ducid, duc_interp,
tx_duration, spp, format, bus_clk_freq);
}
return EXIT_SUCCESS;
}
|