aboutsummaryrefslogtreecommitdiffstats
path: root/host/examples/benchmark_rate.cpp
blob: e61888bbfdee1d37d6550f43f05258e23490e536 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
//
// Copyright 2011-2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include <uhd/convert.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/thread.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <boost/program_options.hpp>
#include <boost/thread/thread.hpp>
#include <atomic>
#include <chrono>
#include <complex>
#include <cstdlib>
#include <iostream>
#include <thread>

namespace po = boost::program_options;
using namespace std::chrono_literals;

namespace {
constexpr auto CLOCK_TIMEOUT = 1000ms; // 1000mS timeout for external clock locking
} // namespace

using start_time_type = std::chrono::time_point<std::chrono::steady_clock>;

/***********************************************************************
 * Test result variables
 **********************************************************************/
unsigned long long num_overruns      = 0;
unsigned long long num_underruns     = 0;
unsigned long long num_rx_samps      = 0;
unsigned long long num_tx_samps      = 0;
unsigned long long num_dropped_samps = 0;
unsigned long long num_seq_errors    = 0;
unsigned long long num_seqrx_errors  = 0; // "D"s
unsigned long long num_late_commands = 0;
unsigned long long num_timeouts_rx   = 0;
unsigned long long num_timeouts_tx   = 0;

inline auto time_delta(const start_time_type& ref_time)
{
    return std::chrono::steady_clock::now() - ref_time;
}

inline std::string time_delta_str(const start_time_type& ref_time)
{
    const auto delta   = time_delta(ref_time);
    const auto hours   = std::chrono::duration_cast<std::chrono::hours>(delta);
    const auto minutes = std::chrono::duration_cast<std::chrono::minutes>(delta - hours);
    const auto seconds =
        std::chrono::duration_cast<std::chrono::seconds>(delta - hours - minutes);
    const auto nanoseconds = std::chrono::duration_cast<std::chrono::nanoseconds>(
        delta - hours - minutes - seconds);

    return str(boost::format("%02d:%02d:%02d.%06d") % hours.count() % minutes.count()
               % seconds.count() % nanoseconds.count());
}

#define NOW() (time_delta_str(start_time))

/***********************************************************************
 * Benchmark RX Rate
 **********************************************************************/
void benchmark_rx_rate(uhd::usrp::multi_usrp::sptr usrp,
    const std::string& rx_cpu,
    uhd::rx_streamer::sptr rx_stream,
    bool random_nsamps,
    const start_time_type& start_time,
    std::atomic<bool>& burst_timer_elapsed,
    bool elevate_priority,
    double rx_delay)
{
    if (elevate_priority) {
        uhd::set_thread_priority_safe();
    }

    // print pre-test summary
    auto time_stamp   = NOW();
    auto rx_rate      = usrp->get_rx_rate() / 1e6;
    auto num_channels = rx_stream->get_num_channels();
    std::cout << boost::format("[%s] Testing receive rate %f Msps on %u channels\n")
                     % time_stamp % rx_rate % num_channels;

    // setup variables and allocate buffer
    uhd::rx_metadata_t md;
    const size_t max_samps_per_packet = rx_stream->get_max_num_samps();
    std::vector<char> buff(
        max_samps_per_packet * uhd::convert::get_bytes_per_item(rx_cpu));
    std::vector<void*> buffs;
    for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++)
        buffs.push_back(&buff.front()); // same buffer for each channel
    bool had_an_overflow = false;
    uhd::time_spec_t last_time;
    const double rate = usrp->get_rx_rate();

    uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
    cmd.num_samps = max_samps_per_packet;
    if (random_nsamps) {
        cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE;
        cmd.num_samps = (rand() % max_samps_per_packet) + 1;
    }
    cmd.time_spec  = usrp->get_time_now() + uhd::time_spec_t(rx_delay);
    cmd.stream_now = (buffs.size() == 1);
    rx_stream->issue_stream_cmd(cmd);

    const float burst_pkt_time =
        std::max<float>(0.100f, (2 * max_samps_per_packet / rate));
    float recv_timeout = burst_pkt_time + rx_delay;

    bool stop_called = false;
    while (true) {
        if (burst_timer_elapsed and not stop_called) {
            rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
            stop_called = true;
        }
        if (random_nsamps) {
            cmd.time_spec  = usrp->get_time_now() + uhd::time_spec_t(rx_delay);
            cmd.num_samps = (rand() % max_samps_per_packet) + 1;
            rx_stream->issue_stream_cmd(cmd);
        }
        try {
            num_rx_samps += rx_stream->recv(buffs, cmd.num_samps, md, recv_timeout)
                            * rx_stream->get_num_channels();
            recv_timeout = burst_pkt_time;
        } catch (uhd::io_error& e) {
            std::cerr << "[" << NOW() << "] Caught an IO exception. " << std::endl;
            std::cerr << e.what() << std::endl;
            return;
        }

        // handle the error codes
        switch (md.error_code) {
            case uhd::rx_metadata_t::ERROR_CODE_NONE:
                if (had_an_overflow) {
                    had_an_overflow          = false;
                    const long dropped_samps = (md.time_spec - last_time).to_ticks(rate);
                    if (dropped_samps < 0) {
                        std::cerr << "[" << NOW()
                                  << "] Timestamp after overrun recovery "
                                     "ahead of error timestamp! Unable to calculate "
                                     "number of dropped samples."
                                     "(Delta: "
                                  << dropped_samps << " ticks)\n";
                    }
                    num_dropped_samps += std::max<long>(1, dropped_samps);
                }
                if ((burst_timer_elapsed or stop_called) and md.end_of_burst) {
                    return;
                }
                break;

            // ERROR_CODE_OVERFLOW can indicate overflow or sequence error
            case uhd::rx_metadata_t::ERROR_CODE_OVERFLOW:
                last_time       = md.time_spec;
                had_an_overflow = true;
                // check out_of_sequence flag to see if it was a sequence error or
                // overflow
                if (!md.out_of_sequence) {
                    num_overruns++;
                } else {
                    num_seqrx_errors++;
                    std::cerr << "[" << NOW() << "] Detected Rx sequence error."
                              << std::endl;
                }
                break;

            case uhd::rx_metadata_t::ERROR_CODE_LATE_COMMAND:
                std::cerr << "[" << NOW() << "] Receiver error: " << md.strerror()
                          << ", restart streaming..." << std::endl;
                num_late_commands++;
                // Radio core will be in the idle state. Issue stream command to restart
                // streaming.
                cmd.time_spec  = usrp->get_time_now() + uhd::time_spec_t(0.05);
                cmd.stream_now = (buffs.size() == 1);
                rx_stream->issue_stream_cmd(cmd);
                break;

            case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT:
                if (burst_timer_elapsed) {
                    return;
                }
                std::cerr << "[" << NOW() << "] Receiver error: " << md.strerror()
                          << ", continuing..." << std::endl;
                num_timeouts_rx++;
                break;

                // Otherwise, it's an error
            default:
                std::cerr << "[" << NOW() << "] Receiver error: " << md.strerror()
                          << std::endl;
                std::cerr << "[" << NOW() << "] Unexpected error on recv, continuing..."
                          << std::endl;
                break;
        }
    }
}

/***********************************************************************
 * Benchmark TX Rate
 **********************************************************************/
void benchmark_tx_rate(uhd::usrp::multi_usrp::sptr usrp,
    const std::string& tx_cpu,
    uhd::tx_streamer::sptr tx_stream,
    std::atomic<bool>& burst_timer_elapsed,
    const start_time_type& start_time,
    const size_t spp,
    bool elevate_priority,
    double tx_delay,
    bool random_nsamps = false)
{
    if (elevate_priority) {
        uhd::set_thread_priority_safe();
    }

    // print pre-test summary
    auto time_stamp   = NOW();
    auto tx_rate      = usrp->get_tx_rate() / 1e6;
    auto num_channels = tx_stream->get_num_channels();
    std::cout << boost::format("[%s] Testing transmit rate %f Msps on %u channels\n")
                     % time_stamp % tx_rate % num_channels;

    // setup variables and allocate buffer
    const size_t max_samps_per_packet = tx_stream->get_max_num_samps();
    std::vector<char> buff(
        max_samps_per_packet * uhd::convert::get_bytes_per_item(tx_cpu));
    std::vector<const void*> buffs;
    for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++)
        buffs.push_back(&buff.front()); // same buffer for each channel
    // Create the metadata, and populate the time spec at the latest possible moment
    uhd::tx_metadata_t md;
    md.has_time_spec = (buffs.size() != 1);
    md.time_spec     = usrp->get_time_now() + uhd::time_spec_t(tx_delay);

    const float timeout = 1.0;

    if (random_nsamps) {
        std::srand((unsigned int)time(NULL));
        while (not burst_timer_elapsed) {
            size_t total_num_samps = (rand() % max_samps_per_packet) + 1;
            size_t num_acc_samps   = 0;

            while (num_acc_samps < total_num_samps) {
                // send a single packet
                num_tx_samps += tx_stream->send(buffs, spp, md, timeout)
                                * tx_stream->get_num_channels();
                num_acc_samps += std::min(
                    total_num_samps - num_acc_samps, max_samps_per_packet);
            }
            md.has_time_spec = false;
        }
    } else {
        while (not burst_timer_elapsed) {
            const size_t num_tx_samps_sent_now =
                tx_stream->send(buffs, spp, md, timeout) * tx_stream->get_num_channels();
            num_tx_samps += num_tx_samps_sent_now;
            if (num_tx_samps_sent_now == 0) {
                num_timeouts_tx++;
                if ((num_timeouts_tx % 10000) == 1) {
                    std::cerr << "[" << NOW() << "] Tx timeouts: " << num_timeouts_tx
                              << std::endl;
                }
            }
            md.has_time_spec = false;
        }
    }

    // send a mini EOB packet
    md.end_of_burst = true;
    tx_stream->send(buffs, 0, md);
}

void benchmark_tx_rate_async_helper(uhd::tx_streamer::sptr tx_stream,
    const start_time_type& start_time,
    std::atomic<bool>& burst_timer_elapsed)
{
    // setup variables and allocate buffer
    uhd::async_metadata_t async_md;
    bool exit_flag = false;

    while (true) {
        if (burst_timer_elapsed) {
            exit_flag = true;
        }

        if (not tx_stream->recv_async_msg(async_md)) {
            if (exit_flag == true)
                return;
            continue;
        }

        // handle the error codes
        switch (async_md.event_code) {
            case uhd::async_metadata_t::EVENT_CODE_BURST_ACK:
                return;

            case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW:
            case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET:
                num_underruns++;
                break;

            case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR:
            case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST:
                num_seq_errors++;
                break;

            default:
                std::cerr << "[" << NOW() << "] Event code: " << async_md.event_code
                          << std::endl;
                std::cerr << "Unexpected event on async recv, continuing..." << std::endl;
                break;
        }
    }
}

/***********************************************************************
 * Main code + dispatcher
 **********************************************************************/
int UHD_SAFE_MAIN(int argc, char* argv[])
{
    // variables to be set by po
    std::string args;
    std::string rx_subdev, tx_subdev;
    std::string rx_stream_args, tx_stream_args;
    double duration;
    double rx_rate, tx_rate;
    std::string rx_otw, tx_otw;
    std::string rx_cpu, tx_cpu;
    std::string ref, pps;
    std::string channel_list, rx_channel_list, tx_channel_list;
    bool random_nsamps = false;
    std::atomic<bool> burst_timer_elapsed(false);
    size_t overrun_threshold, underrun_threshold, drop_threshold, seq_threshold;
    size_t rx_spp, tx_spp;
    double tx_delay, rx_delay;
    std::string priority;
    bool elevate_priority = false;

    // setup the program options
    po::options_description desc("Allowed options");
    // clang-format off
    desc.add_options()
        ("help", "help message")
        ("args", po::value<std::string>(&args)->default_value(""), "single uhd device address args")
        ("duration", po::value<double>(&duration)->default_value(10.0), "duration for the test in seconds")
        ("rx_subdev", po::value<std::string>(&rx_subdev), "specify the device subdev for RX")
        ("tx_subdev", po::value<std::string>(&tx_subdev), "specify the device subdev for TX")
        ("rx_stream_args", po::value<std::string>(&rx_stream_args)->default_value(""), "stream args for RX streamer")
        ("tx_stream_args", po::value<std::string>(&tx_stream_args)->default_value(""), "stream args for TX streamer")
        ("rx_rate", po::value<double>(&rx_rate), "specify to perform a RX rate test (sps)")
        ("tx_rate", po::value<double>(&tx_rate), "specify to perform a TX rate test (sps)")
        ("rx_spp", po::value<size_t>(&rx_spp), "samples/packet value for RX")
        ("tx_spp", po::value<size_t>(&tx_spp), "samples/packet value for TX")
        ("rx_otw", po::value<std::string>(&rx_otw)->default_value("sc16"), "specify the over-the-wire sample mode for RX")
        ("tx_otw", po::value<std::string>(&tx_otw)->default_value("sc16"), "specify the over-the-wire sample mode for TX")
        ("rx_cpu", po::value<std::string>(&rx_cpu)->default_value("fc32"), "specify the host/cpu sample mode for RX")
        ("tx_cpu", po::value<std::string>(&tx_cpu)->default_value("fc32"), "specify the host/cpu sample mode for TX")
        ("ref", po::value<std::string>(&ref), "clock reference (internal, external, mimo, gpsdo)")
        ("pps", po::value<std::string>(&pps), "PPS source (internal, external, mimo, gpsdo)")
        ("random", "Run with random values of samples in send() and recv() to stress-test the I/O.")
        ("channels", po::value<std::string>(&channel_list)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
        ("rx_channels", po::value<std::string>(&rx_channel_list), "which RX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
        ("tx_channels", po::value<std::string>(&tx_channel_list), "which TX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
        ("overrun-threshold", po::value<size_t>(&overrun_threshold),
         "Number of overruns (O) which will declare the benchmark a failure.")
        ("underrun-threshold", po::value<size_t>(&underrun_threshold),
         "Number of underruns (U) which will declare the benchmark a failure.")
        ("drop-threshold", po::value<size_t>(&drop_threshold),
         "Number of dropped packets (D) which will declare the benchmark a failure.")
        ("seq-threshold", po::value<size_t>(&seq_threshold),
         "Number of dropped packets (D) which will declare the benchmark a failure.")
        // NOTE: TX delay defaults to 0.25 seconds to allow the buffer on the device to fill completely
        ("tx_delay", po::value<double>(&tx_delay)->default_value(0.25), "delay before starting TX in seconds")
        ("rx_delay", po::value<double>(&rx_delay)->default_value(0.05), "delay before starting RX in seconds")
        ("priority", po::value<std::string>(&priority)->default_value("normal"), "thread priority (normal, high)")
        ("multi_streamer", "Create a separate streamer per channel")
    ;
    // clang-format on
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    // print the help message
    if (vm.count("help") or (vm.count("rx_rate") + vm.count("tx_rate")) == 0) {
        std::cout << boost::format("UHD Benchmark Rate %s") % desc << std::endl;
        std::cout << "    Specify --rx_rate for a receive-only test.\n"
                     "    Specify --tx_rate for a transmit-only test.\n"
                     "    Specify both options for a full-duplex test.\n"
                  << std::endl;
        return ~0;
    }

    if (priority == "high") {
        uhd::set_thread_priority_safe();
        elevate_priority = true;
    }

    // Random number of samples?
    if (vm.count("random")) {
        std::cout << "Using random number of samples in send() and recv() calls."
                  << std::endl;
        random_nsamps = true;
    }

    // create a usrp device
    std::cout << std::endl;
    uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP);
    if (not device_addrs.empty() and device_addrs.at(0).get("type", "") == "usrp1") {
        std::cerr << "*** Warning! ***" << std::endl;
        std::cerr << "Benchmark results will be inaccurate on USRP1 due to insufficient "
                     "features.\n"
                  << std::endl;
    }
    start_time_type start_time(std::chrono::steady_clock::now());
    std::cout << boost::format("[%s] Creating the usrp device with: %s...") % NOW() % args
              << std::endl;
    uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);

    // always select the subdevice first, the channel mapping affects the other settings
    if (vm.count("rx_subdev")) {
        usrp->set_rx_subdev_spec(rx_subdev);
    }
    if (vm.count("tx_subdev")) {
        usrp->set_tx_subdev_spec(tx_subdev);
    }

    std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
    int num_mboards = usrp->get_num_mboards();

    boost::thread_group thread_group;

    if (vm.count("ref")) {
        if (ref == "mimo") {
            if (num_mboards != 2) {
                std::cerr
                    << "ERROR: ref = \"mimo\" implies 2 motherboards; your system has "
                    << num_mboards << " boards" << std::endl;
                return -1;
            }
            usrp->set_clock_source("mimo", 1);
        } else {
            usrp->set_clock_source(ref);
        }

        if (ref != "internal") {
            std::cout << "Now confirming lock on clock signals..." << std::endl;
            bool is_locked = false;
            auto end_time  = std::chrono::steady_clock::now() + CLOCK_TIMEOUT;
            for (int i = 0; i < num_mboards; i++) {
                if (ref == "mimo" and i == 0)
                    continue;
                while ((is_locked = usrp->get_mboard_sensor("ref_locked", i).to_bool())
                           == false
                       and std::chrono::steady_clock::now() < end_time) {
                    std::this_thread::sleep_for(1ms);
                }
                if (is_locked == false) {
                    std::cerr << "ERROR: Unable to confirm clock signal locked on board:"
                              << i << std::endl;
                    return -1;
                }
            }
        }
    }

    if (vm.count("pps")) {
        if (pps == "mimo") {
            if (num_mboards != 2) {
                std::cerr
                    << "ERROR: ref = \"mimo\" implies 2 motherboards; your system has "
                    << num_mboards << " boards" << std::endl;
                return -1;
            }
            // make mboard 1 a slave over the MIMO Cable
            usrp->set_time_source("mimo", 1);
        } else {
            usrp->set_time_source(pps);
        }
    }

    // check that the device has sufficient RX and TX channels available
    std::vector<std::string> channel_strings;
    std::vector<size_t> rx_channel_nums;
    if (vm.count("rx_rate")) {
        if (!vm.count("rx_channels")) {
            rx_channel_list = channel_list;
        }

        boost::split(channel_strings, rx_channel_list, boost::is_any_of("\"',"));
        for (size_t ch = 0; ch < channel_strings.size(); ch++) {
            size_t chan = std::stoul(channel_strings[ch]);
            if (chan >= usrp->get_rx_num_channels()) {
                throw std::runtime_error("Invalid channel(s) specified.");
            } else {
                rx_channel_nums.push_back(std::stoul(channel_strings[ch]));
            }
        }
    }

    std::vector<size_t> tx_channel_nums;
    if (vm.count("tx_rate")) {
        if (!vm.count("tx_channels")) {
            tx_channel_list = channel_list;
        }

        boost::split(channel_strings, tx_channel_list, boost::is_any_of("\"',"));
        for (size_t ch = 0; ch < channel_strings.size(); ch++) {
            size_t chan = std::stoul(channel_strings[ch]);
            if (chan >= usrp->get_tx_num_channels()) {
                throw std::runtime_error("Invalid channel(s) specified.");
            } else {
                tx_channel_nums.push_back(std::stoul(channel_strings[ch]));
            }
        }
    }

    std::cout << boost::format("[%s] Setting device timestamp to 0...") % NOW()
              << std::endl;
    if (pps == "mimo" or ref == "mimo") {
        // only set the master's time, the slave's is automatically sync'd
        usrp->set_time_now(uhd::time_spec_t(0.0), 0);
        // ensure that the setter has completed
        usrp->get_time_now();
        // wait for the time to sync
        std::this_thread::sleep_for(std::chrono::milliseconds(1));
    } else if (rx_channel_nums.size() > 1 or tx_channel_nums.size() > 1) {
        usrp->set_time_unknown_pps(uhd::time_spec_t(0.0));
    } else {
        usrp->set_time_now(0.0);
    }

    // spawn the receive test thread
    if (vm.count("rx_rate")) {
        usrp->set_rx_rate(rx_rate);
        if (vm.count("rx_spp")) {
            std::cout << boost::format("Setting RX spp to %u\n") % rx_spp;
            usrp->set_rx_spp(rx_spp);
        }
        if (vm.count("multi_streamer")) {
            for (size_t count = 0; count < rx_channel_nums.size(); count++) {
                std::vector<size_t> this_streamer_channels{rx_channel_nums[count]};
                 // create a receive streamer
                uhd::stream_args_t stream_args(rx_cpu, rx_otw);
                stream_args.channels             = this_streamer_channels;
                stream_args.args                 = uhd::device_addr_t(rx_stream_args);
                uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
                auto rx_thread = thread_group.create_thread([=, &burst_timer_elapsed]() {
                    benchmark_rx_rate(usrp,
                        rx_cpu,
                        rx_stream,
                        random_nsamps,
                        start_time,
                        burst_timer_elapsed,
                        elevate_priority,
                        rx_delay);
                });
                uhd::set_thread_name(rx_thread, "bmark_rx_strm" + std::to_string(count));
            }
        }
        else {
            // create a receive streamer
            uhd::stream_args_t stream_args(rx_cpu, rx_otw);
            stream_args.channels             = rx_channel_nums;
            stream_args.args                 = uhd::device_addr_t(rx_stream_args);
            uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
            auto rx_thread = thread_group.create_thread([=, &burst_timer_elapsed]() {
                benchmark_rx_rate(usrp,
                    rx_cpu,
                    rx_stream,
                    random_nsamps,
                    start_time,
                    burst_timer_elapsed,
                    elevate_priority,
                    rx_delay);
            });
            uhd::set_thread_name(rx_thread, "bmark_rx_stream");
        }
    }

    // spawn the transmit test thread
    if (vm.count("tx_rate")) {
        usrp->set_tx_rate(tx_rate);

	if (vm.count("multi_streamer")) {
            for (size_t count = 0; count < tx_channel_nums.size(); count++) {
                std::vector<size_t> this_streamer_channels{tx_channel_nums[count]};

		// create a transmit streamer
		uhd::stream_args_t stream_args(tx_cpu, tx_otw);
		stream_args.channels             = this_streamer_channels;
		stream_args.args                 = uhd::device_addr_t(tx_stream_args);
		uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
		const size_t max_spp             = tx_stream->get_max_num_samps();
		size_t spp                       = max_spp;
		if (vm.count("tx_spp")) {
		    spp = std::min(spp, tx_spp);
		}
		std::cout << boost::format("Setting TX spp to %u\n") % spp;
		auto tx_thread = thread_group.create_thread([=, &burst_timer_elapsed]() {
		    benchmark_tx_rate(usrp,
			tx_cpu,
			tx_stream,
			burst_timer_elapsed,
			start_time,
			spp,
			elevate_priority,
			tx_delay,
			random_nsamps);
		});
		uhd::set_thread_name(tx_thread, "bmark_tx_strm" + std::to_string(count));
		auto tx_async_thread = thread_group.create_thread([=, &burst_timer_elapsed]() {
		    benchmark_tx_rate_async_helper(tx_stream, start_time, burst_timer_elapsed);
		});
		uhd::set_thread_name(tx_async_thread, "bmark_tx_hlpr" + std::to_string(count));
	    }
	}
	else {
		// create a transmit streamer
		uhd::stream_args_t stream_args(tx_cpu, tx_otw);
		stream_args.channels             = tx_channel_nums;
		stream_args.args                 = uhd::device_addr_t(tx_stream_args);
		uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
		const size_t max_spp             = tx_stream->get_max_num_samps();
		size_t spp                       = max_spp;
		if (vm.count("tx_spp")) {
		    spp = std::min(spp, tx_spp);
		}
		std::cout << boost::format("Setting TX spp to %u\n") % spp;
		auto tx_thread = thread_group.create_thread([=, &burst_timer_elapsed]() {
		    benchmark_tx_rate(usrp,
			tx_cpu,
			tx_stream,
			burst_timer_elapsed,
			start_time,
			spp,
			elevate_priority,
			tx_delay,
			random_nsamps);
		});
		uhd::set_thread_name(tx_thread, "bmark_tx_stream");
		auto tx_async_thread = thread_group.create_thread([=, &burst_timer_elapsed]() {
		    benchmark_tx_rate_async_helper(tx_stream, start_time, burst_timer_elapsed);
		});
		uhd::set_thread_name(tx_async_thread, "bmark_tx_helper");
	}
    }

    // sleep for the required duration (add any initial delay)
    if (vm.count("rx_rate") and vm.count("tx_rate")) {
        duration += std::max(rx_delay, tx_delay);
    } else if (vm.count("rx_rate")) {
        duration += rx_delay;
    } else {
        duration += tx_delay;
    }
    const int64_t secs  = int64_t(duration);
    const int64_t usecs = int64_t((duration - secs) * 1e6);
    std::this_thread::sleep_for(
        std::chrono::seconds(secs) + std::chrono::microseconds(usecs));

    // interrupt and join the threads
    burst_timer_elapsed = true;
    thread_group.join_all();

    std::cout << "[" << NOW() << "] Benchmark complete." << std::endl << std::endl;

    // print summary
    const std::string threshold_err(" ERROR: Exceeds threshold!");
    const bool overrun_threshold_err = vm.count("overrun-threshold")
                                       and num_overruns > overrun_threshold;
    const bool underrun_threshold_err = vm.count("underrun-threshold")
                                        and num_underruns > underrun_threshold;
    const bool drop_threshold_err = vm.count("drop-threshold")
                                    and num_seqrx_errors > drop_threshold;
    const bool seq_threshold_err = vm.count("seq-threshold")
                                   and num_seq_errors > seq_threshold;
    std::cout << std::endl
              << boost::format("Benchmark rate summary:\n"
                               "  Num received samples:     %u\n"
                               "  Num dropped samples:      %u\n"
                               "  Num overruns detected:    %u\n"
                               "  Num transmitted samples:  %u\n"
                               "  Num sequence errors (Tx): %u\n"
                               "  Num sequence errors (Rx): %u\n"
                               "  Num underruns detected:   %u\n"
                               "  Num late commands:        %u\n"
                               "  Num timeouts (Tx):        %u\n"
                               "  Num timeouts (Rx):        %u\n")
                     % num_rx_samps % num_dropped_samps % num_overruns % num_tx_samps
                     % num_seq_errors % num_seqrx_errors % num_underruns
                     % num_late_commands % num_timeouts_tx % num_timeouts_rx
              << std::endl;
    // finished
    std::cout << std::endl << "Done!" << std::endl << std::endl;

    if (overrun_threshold_err || underrun_threshold_err || drop_threshold_err
        || seq_threshold_err) {
        std::cout << "The following error thresholds were exceeded:\n";
        if (overrun_threshold_err) {
            std::cout << boost::format("  * Overruns (%d/%d)") % num_overruns
                             % overrun_threshold
                      << std::endl;
        }
        if (underrun_threshold_err) {
            std::cout << boost::format("  * Underruns (%d/%d)") % num_underruns
                             % underrun_threshold
                      << std::endl;
        }
        if (drop_threshold_err) {
            std::cout << boost::format("  * Dropped packets (RX) (%d/%d)")
                             % num_seqrx_errors % drop_threshold
                      << std::endl;
        }
        if (seq_threshold_err) {
            std::cout << boost::format("  * Dropped packets (TX) (%d/%d)")
                             % num_seq_errors % seq_threshold
                      << std::endl;
        }
        return EXIT_FAILURE;
    }
    return EXIT_SUCCESS;
}