1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
//
// Copyright 2010 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#ifndef ASCII_ART_DFT_HPP
#define ASCII_ART_DFT_HPP
#include <complex>
#include <cstddef>
#include <stdexcept>
#include <string>
#include <vector>
namespace ascii_art_dft {
//! Type produced by the log power DFT function
typedef std::vector<float> log_pwr_dft_type;
/*!
* Get a logarithmic power DFT of the input samples.
* Samples are expected to be in the range [-1.0, 1.0].
* \param samps a pointer to an array of complex samples
* \param nsamps the number of samples in the array
* \return a real range of DFT bins in units of dB
*/
template <typename T>
log_pwr_dft_type log_pwr_dft(const std::complex<T>* samps, size_t nsamps);
/*!
* Convert a DFT to a piroundable ascii plot.
* \param dft the log power dft bins
* \param width the frame width in characters
* \param height the frame height in characters
* \param samp_rate the sample rate in Sps
* \param dc_freq the DC frequency in Hz
* \param dyn_rng the dynamic range in dB
* \param ref_lvl the reference level in dB
* \return the plot as an ascii string
*/
std::string dft_to_plot(const log_pwr_dft_type& dft,
size_t width,
size_t height,
double samp_rate,
double dc_freq,
float dyn_rng,
float ref_lvl);
} // namespace ascii_art_dft
/***********************************************************************
* Implementation includes
**********************************************************************/
#include <algorithm>
#include <cmath>
#include <sstream>
/***********************************************************************
* Helper functions
**********************************************************************/
namespace { /*anon*/
static const double pi = double(std::acos(-1.0));
//! Round a floating-point value to the nearest integer
template <typename T>
int iround(T val)
{
return (val > 0) ? int(val + 0.5) : int(val - 0.5);
}
//! Pick the closest number that is nice to display
template <typename T>
T to_clean_num(const T num)
{
if (num == 0)
return 0;
const T pow10 = std::pow(T(10), int(std::floor(std::log10(std::abs(num)))));
const T norm = std::abs(num) / pow10;
static const int cleans[] = {1, 2, 5, 10};
int clean = cleans[0];
for (size_t i = 1; i < sizeof(cleans) / sizeof(cleans[0]); i++) {
if (std::abs(norm - cleans[i]) < std::abs(norm - clean))
clean = cleans[i];
}
return ((num < 0) ? -1 : 1) * clean * pow10;
}
//! Compute an FFT with pre-computed factors using Cooley-Tukey
template <typename T>
std::complex<T> ct_fft_f(const std::complex<T>* samps,
size_t nsamps,
const std::complex<T>* factors,
size_t start = 0,
size_t step = 1)
{
if (nsamps == 1)
return samps[start];
std::complex<T> E_k = ct_fft_f(samps, nsamps / 2, factors + 1, start, step * 2);
std::complex<T> O_k =
ct_fft_f(samps, nsamps / 2, factors + 1, start + step, step * 2);
return E_k + factors[0] * O_k;
}
//! Compute an FFT for a particular bin k using Cooley-Tukey
template <typename T>
std::complex<T> ct_fft_k(const std::complex<T>* samps, size_t nsamps, size_t k)
{
// pre-compute the factors to use in Cooley-Tukey
std::vector<std::complex<T>> factors;
for (size_t N = nsamps; N != 0; N /= 2) {
factors.push_back(std::exp(std::complex<T>(0, T(-2 * pi * k / N))));
}
return ct_fft_f(samps, nsamps, &factors.front());
}
//! Helper class to build a DFT plot frame
class frame_type
{
public:
frame_type(size_t width, size_t height)
: _frame(width - 1, std::vector<char>(height, ' '))
{
/* NOP */
}
// accessors to parts of the frame
char& get_plot(size_t b, size_t z)
{
return _frame.at(b + albl_w).at(z + flbl_h);
}
char& get_albl(size_t b, size_t z)
{
return _frame.at(b).at(z + flbl_h);
}
char& get_ulbl(size_t b)
{
return _frame.at(b).at(flbl_h - 1);
}
char& get_flbl(size_t b)
{
return _frame.at(b + albl_w).at(flbl_h - 1);
}
// dimension accessors
size_t get_plot_h(void) const
{
return _frame.front().size() - flbl_h;
}
size_t get_plot_w(void) const
{
return _frame.size() - albl_w;
}
size_t get_albl_w(void) const
{
return albl_w;
}
std::string to_string(void)
{
std::stringstream frame_ss;
for (size_t z = 0; z < _frame.front().size(); z++) {
for (size_t b = 0; b < _frame.size(); b++) {
frame_ss << _frame[b][_frame[b].size() - z - 1];
}
frame_ss << std::endl;
}
return frame_ss.str();
}
private:
static const size_t albl_w = 6, flbl_h = 1;
std::vector<std::vector<char>> _frame;
};
} // namespace
/***********************************************************************
* Implementation code
**********************************************************************/
namespace ascii_art_dft {
//! skip constants for amplitude and frequency labels
static const size_t albl_skip = 5, flbl_skip = 20;
template <typename T>
log_pwr_dft_type log_pwr_dft(const std::complex<T>* samps, size_t nsamps)
{
if (nsamps & (nsamps - 1))
throw std::runtime_error("num samps is not a power of 2");
// compute the window
double win_pwr = 0;
std::vector<std::complex<T>> win_samps;
for (size_t n = 0; n < nsamps; n++) {
// double w_n = 1;
// double w_n = 0.54 //hamming window
// -0.46*std::cos(2*pi*n/(nsamps-1))
//;
double w_n = 0.35875 // blackman-harris window
- 0.48829 * std::cos(2 * pi * n / (nsamps - 1))
+ 0.14128 * std::cos(4 * pi * n / (nsamps - 1))
- 0.01168 * std::cos(6 * pi * n / (nsamps - 1));
// double w_n = 1 // flat top window
// -1.930*std::cos(2*pi*n/(nsamps-1))
// +1.290*std::cos(4*pi*n/(nsamps-1))
// -0.388*std::cos(6*pi*n/(nsamps-1))
// +0.032*std::cos(8*pi*n/(nsamps-1))
//;
win_samps.push_back(T(w_n) * samps[n]);
win_pwr += w_n * w_n;
}
// compute the log-power dft
log_pwr_dft_type log_pwr_dft;
for (size_t k = 0; k < nsamps; k++) {
std::complex<T> dft_k = ct_fft_k(&win_samps.front(), nsamps, k);
log_pwr_dft.push_back(
float(+20 * std::log10(std::abs(dft_k)) - 20 * std::log10(T(nsamps))
- 10 * std::log10(win_pwr / nsamps) + 3));
}
return log_pwr_dft;
}
std::string dft_to_plot(const log_pwr_dft_type& dft_,
size_t width,
size_t height,
double samp_rate,
double dc_freq,
float dyn_rng,
float ref_lvl)
{
frame_type frame(width, height); // fill this frame
// re-order the dft so dc in in the center
const size_t num_bins = dft_.size() - 1 + dft_.size() % 2; // make it odd
log_pwr_dft_type dft(num_bins);
for (size_t n = 0; n < num_bins; n++) {
dft[n] = dft_[(n + num_bins / 2) % num_bins];
}
// fill the plot with dft bins
for (size_t b = 0; b < frame.get_plot_w(); b++) {
// indexes from the dft to grab for the plot
const size_t n_start = std::max(
iround(double(b - 0.5) * (num_bins - 1) / (frame.get_plot_w() - 1)), 0);
const size_t n_stop =
std::min(iround(double(b + 0.5) * (num_bins - 1) / (frame.get_plot_w() - 1)),
int(num_bins));
// calculate val as the max across points
float val = dft.at(n_start);
for (size_t n = n_start; n < n_stop; n++)
val = std::max(val, dft.at(n));
const float scaled =
(val - (ref_lvl - dyn_rng)) * (frame.get_plot_h() - 1) / dyn_rng;
for (size_t z = 0; z < frame.get_plot_h(); z++) {
static const std::string syms(".:!|");
if (scaled - z >= 1)
frame.get_plot(b, z) = syms.at(syms.size() - 1);
else if (scaled - z > 0)
frame.get_plot(b, z) = syms.at(size_t((scaled - z) * syms.size()));
}
}
// create vertical amplitude labels
const float db_step = to_clean_num(dyn_rng / (frame.get_plot_h() - 1) * albl_skip);
for (float db = db_step * (int((ref_lvl - dyn_rng) / db_step));
db <= db_step * (int(ref_lvl / db_step));
db += db_step) {
const int z =
iround((db - (ref_lvl - dyn_rng)) * (frame.get_plot_h() - 1) / dyn_rng);
if (z < 0 or size_t(z) >= frame.get_plot_h())
continue;
std::stringstream ss;
ss << db;
std::string lbl = ss.str();
for (size_t i = 0; i < lbl.size() and i < frame.get_albl_w(); i++) {
frame.get_albl(i, z) = lbl[i];
}
}
// create vertical units label
std::string ulbl = "dBfs";
for (size_t i = 0; i < ulbl.size(); i++) {
frame.get_ulbl(i + 1) = ulbl[i];
}
// create horizontal frequency labels
const double f_step = to_clean_num(samp_rate / frame.get_plot_w() * flbl_skip);
for (double freq = f_step * int((-samp_rate / 2 / f_step));
freq <= f_step * int((+samp_rate / 2 / f_step));
freq += f_step) {
const int b =
iround((freq + samp_rate / 2) * (frame.get_plot_w() - 1) / samp_rate);
std::stringstream ss;
ss << (freq + dc_freq) / 1e6 << "MHz";
std::string lbl = ss.str();
if (b < int(lbl.size() / 2)
or b + lbl.size() - lbl.size() / 2 >= frame.get_plot_w())
continue;
for (size_t i = 0; i < lbl.size(); i++) {
frame.get_flbl(b + i - lbl.size() / 2) = lbl[i];
}
}
return frame.to_string();
}
} // namespace ascii_art_dft
/*
//example main function to test the dft
#include <curses.h>
#include <cstdlib>
#include <iostream>
#include <thread>
#include <chrono>
int main(void){
using namespace std::chrono_literals;
initscr();
while (true){
clear();
std::vector<std::complex<float> > samples;
for(size_t i = 0; i < 512; i++){
samples.push_back(std::complex<float>(
float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4,
float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4
));
samples[i] += 0.5*std::sin(i*3.14/2) + 0.7;
}
ascii_art_dft::log_pwr_dft_type dft;
dft = ascii_art_dft::log_pwr_dft(&samples.front(), samples.size());
printw("%s", ascii_art_dft::dft_to_plot(
dft, COLS, LINES,
12.5e4, 2.45e9,
60, 0
).c_str());
refresh();
std::this_thread::sleep_for(1s);
}
endwin();
std::cout << "here\n";
return 0;
}
*/
#endif /*ASCII_ART_DFT_HPP*/
|