1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//! RFNoC specific digital down-conversion chain
module ddc #(
parameter SR_FREQ_ADDR = 0,
parameter SR_SCALE_IQ_ADDR = 1,
parameter SR_DECIM_ADDR = 2,
parameter SR_MUX_ADDR = 3,
parameter SR_COEFFS_ADDR = 4,
parameter PRELOAD_HBS = 1, // Preload half band filter state with 0s
parameter NUM_HB = 3,
parameter CIC_MAX_DECIM = 255,
parameter SAMPLE_WIDTH = 16,
parameter WIDTH = 24
)(
input clk, input reset,
input clear, // Resets everything except the timed phase inc FIFO and phase inc
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input timed_set_stb, input [7:0] timed_set_addr, input [31:0] timed_set_data,
input [31:0] sample_in_tdata,
input sample_in_tvalid,
input sample_in_tlast,
output sample_in_tready,
input sample_in_tuser,
input sample_in_eob,
output [31:0] sample_out_tdata,
output sample_out_tvalid,
input sample_out_tready,
output sample_out_tlast
);
localparam cwidth = 25;
localparam zwidth = 24;
wire [31:0] sr_phase_inc, sr_phase_inc_timed_tdata;
wire sr_phase_inc_valid, sr_phase_inc_timed_tvalid, sr_phase_inc_timed_tready, sr_phase_inc_timed_tlast;
reg [31:0] phase_inc;
reg [31:0] phase;
reg phase_inc_valid;
wire [SAMPLE_WIDTH*2-1:0] dds_in_tdata;
wire dds_in_tlast;
wire dds_in_tvalid;
wire dds_in_tready;
wire [SAMPLE_WIDTH*2-1:0] dds_in_fifo_tdata;
wire dds_in_fifo_tlast;
wire dds_in_fifo_tvalid;
wire dds_in_fifo_tready;
wire [WIDTH-1:0] dds_in_i_tdata;
wire [WIDTH-1:0] dds_in_q_tdata;
wire [WIDTH-1:0] dds_out_i_tdata;
wire [WIDTH-1:0] dds_out_q_tdata;
wire [SAMPLE_WIDTH*2-1:0] dds_in_sync_tdata;
wire dds_in_sync_tvalid, dds_in_sync_tready, dds_in_sync_tlast;
wire [WIDTH-1:0] phase_sync_tdata;
wire phase_sync_tvalid, phase_sync_tready, phase_sync_tlast;
wire [WIDTH-1:0] phase_tdata = phase[31:32-WIDTH];
wire phase_tvalid, phase_tready, phase_tlast;
wire dds_out_tlast;
wire dds_out_tvalid;
wire [15:0] dds_input_fifo_space, dds_input_fifo_occupied;
wire [17:0] scale_factor;
wire last_cic;
wire last_cic_decimate_in;
wire strobe_dds_clip;
wire [WIDTH-1:0] i_dds_clip, q_dds_clip;
wire [WIDTH-1:0] i_cic, q_cic;
wire [46:0] i_hb1, q_hb1;
wire [46:0] i_hb2, q_hb2;
wire [47:0] i_hb3, q_hb3;
wire sample_out_stb;
wire strobe_cic, strobe_hb1, strobe_hb2, strobe_hb3;
wire ddc_chain_tready;
reg [7:0] cic_decim_rate;
wire [7:0] cic_decim_rate_int;
wire rate_changed;
wire [SAMPLE_WIDTH-1:0] sample_in_i = {sample_in_tdata[31:16]};
wire [SAMPLE_WIDTH-1:0] sample_in_q = {sample_in_tdata[15:0]};
wire sample_mux_tready;
wire sample_mux_set_freq;
wire [SAMPLE_WIDTH-1:0] sample_mux_i, sample_mux_q;
wire realmode;
wire swap_iq;
reg [1:0] hb_rate;
wire [1:0] hb_rate_int;
wire [2:0] enable_hb = { hb_rate == 2'b11, hb_rate[1] == 1'b1, hb_rate != 2'b00 };
wire reload_go, reload_we1, reload_we2, reload_we3, reload_ld1, reload_ld2, reload_ld3;
wire [17:0] coef_din;
//phase incr settings regs and mux.
setting_reg #(.my_addr(SR_FREQ_ADDR)) set_freq (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(sr_phase_inc),.changed(sr_phase_inc_valid));
assign sr_phase_inc_timed_tready = sample_in_tvalid & sample_in_tready & sample_mux_set_freq;
axi_setting_reg #(
.ADDR(SR_FREQ_ADDR),
.USE_FIFO(1),
.FIFO_SIZE(5))
set_freq_timed (
.clk(clk), .reset(reset), .error_stb(),
.set_stb(timed_set_stb), .set_addr(timed_set_addr), .set_data(timed_set_data),
.o_tdata(sr_phase_inc_timed_tdata), .o_tlast(sr_phase_inc_timed_tlast), .o_tvalid(sr_phase_inc_timed_tvalid),
.o_tready(sr_phase_inc_timed_tready));
// Load phase increment depending on whether or not the settings bus write is
// a timed command. Non-timed commands get priority.
always @(posedge clk) begin
if (reset) begin
phase_inc <= 'd0;
phase_inc_valid <= 'd0;
end else begin
if (sr_phase_inc_valid) begin
phase_inc <= sr_phase_inc;
phase_inc_valid <= sr_phase_inc_valid;
end else if (sr_phase_inc_timed_tvalid & sr_phase_inc_timed_tready) begin
phase_inc <= sr_phase_inc_timed_tdata;
phase_inc_valid <= sr_phase_inc_timed_tvalid;
end else
phase_inc_valid <= 1'b0;
end
end
setting_reg #(.my_addr(SR_SCALE_IQ_ADDR), .width(18)) set_scale_iq (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
setting_reg #(.my_addr(SR_DECIM_ADDR), .width(10), .at_reset(1 /* No decimation */)) set_decim (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({hb_rate_int, cic_decim_rate_int}),.changed(rate_changed));
setting_reg #(.my_addr(SR_MUX_ADDR), .width(2)) set_mux (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({realmode,swap_iq}),.changed());
setting_reg #(.my_addr(SR_COEFFS_ADDR), .width(24)) set_coeffs (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({reload_ld3,reload_we3,reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din}),.changed(reload_go));
// Prevent changing rate while processing samples as this
// will corrupt the output
reg active, rate_changed_hold, rate_changed_stb;
always @(posedge clk) begin
if (reset) begin
active <= 1'b0;
rate_changed_hold <= 1'b0;
rate_changed_stb <= 1'b0;
cic_decim_rate <= 'd1;
hb_rate <= 'd0;
end else begin
if (clear) begin
active <= 1'b0;
end else if (sample_in_tvalid & sample_in_tready) begin
active <= 1'b1;
end
if (rate_changed & active) begin
rate_changed_hold <= 1'b1;
end
if ((clear | ~active) & (rate_changed | rate_changed_hold)) begin
rate_changed_hold <= 1'b0;
rate_changed_stb <= 1'b1;
cic_decim_rate <= cic_decim_rate_int;
hb_rate <= hb_rate_int;
end else begin
rate_changed_stb <= 1'b0;
end
end
end
//doesn't need to be registered and now can have back pressure from dds
assign sample_mux_set_freq = sample_in_tuser;
assign sample_mux_i = swap_iq ? sample_in_q : sample_in_i;
assign sample_mux_q = realmode ? 'd0 : (swap_iq ? sample_in_i : sample_in_q);
/** Phase accumulator, Xilinx DDS/Complex Mult **/
//connect samples to dds
assign dds_in_tdata = {sample_mux_i,sample_mux_q};
assign dds_in_tvalid = sample_in_tvalid & ddc_chain_tready; //if the rest of the chain isn't ready, then halt all data flow. this should help with rate changes...
assign dds_in_tlast = sample_in_tlast;
assign sample_in_tready = dds_in_tready & ddc_chain_tready;
assign phase_tvalid = dds_in_tvalid;
assign phase_tlast = dds_in_tlast;
// NCO
always @(posedge clk) begin
if (reset | clear | (phase_inc_valid & sr_phase_inc_timed_tready) | sample_in_eob) begin
phase <= 0;
end else if (dds_in_tvalid & dds_in_tready) begin //only increment phase when data is ready
phase <= phase + phase_inc;
end
end
// Sync the two path's pipeline delay.
// This is needed to ensure that applying the phase update happens on the
// correct sample regardless of differing downstream path delays.
axi_sync #(
.SIZE(2),
.WIDTH_VEC({WIDTH,2*SAMPLE_WIDTH}), // Vector of widths, each width is defined by a 32-bit value
.FIFO_SIZE(0))
axi_sync (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata({phase_tdata,dds_in_tdata}),
.i_tlast({phase_tlast,dds_in_tlast}),
.i_tvalid({phase_tvalid,dds_in_tvalid}),
.i_tready({phase_tready,dds_in_tready}),
.o_tdata({phase_sync_tdata,dds_in_sync_tdata}),
.o_tlast({phase_sync_tlast,dds_in_sync_tlast}),
.o_tvalid({phase_sync_tvalid,dds_in_sync_tvalid}),
.o_tready({phase_sync_tready,dds_in_sync_tready}));
//hold data to align with dds pipelining
axi_fifo #(.WIDTH(2*SAMPLE_WIDTH+1), .SIZE(5)) dds_input_fifo
(.clk(clk), .reset(reset), .clear(clear),
.i_tdata({dds_in_sync_tlast,dds_in_sync_tdata}), .i_tvalid(dds_in_sync_tvalid), .i_tready(dds_in_sync_tready),
.o_tdata({dds_in_fifo_tlast,dds_in_fifo_tdata}), .o_tvalid(dds_in_fifo_tvalid), .o_tready(dds_in_fifo_tready),
.space(dds_input_fifo_space), .occupied(dds_input_fifo_occupied)
);
// after fifo, do q quick sign extend op to get up to 24 bits. to match how the dds deals with the data path.
// add extra bits to fit the dds width, 5 bits added here
sign_extend #(
.bits_in(SAMPLE_WIDTH), .bits_out(WIDTH))
sign_extend_dds_i (
.in({dds_in_fifo_tdata[2*SAMPLE_WIDTH-1:SAMPLE_WIDTH]}), .out(dds_in_i_tdata));
sign_extend #(
.bits_in(SAMPLE_WIDTH), .bits_out(WIDTH))
sign_extend_dds_q (
.in({dds_in_fifo_tdata[SAMPLE_WIDTH-1:0]}), .out(dds_in_q_tdata));
dds_freq_tune dds_freq_tune_inst (
.clk(clk),
.reset(reset | clear),
.eob(sample_in_eob),
.rate_changed(rate_changed_hold),
.dds_input_fifo_occupied(dds_input_fifo_occupied),
/* IQ input */
.s_axis_din_tlast(dds_in_fifo_tlast),
.s_axis_din_tvalid(dds_in_fifo_tvalid),
.s_axis_din_tready(dds_in_fifo_tready),
.s_axis_din_tdata({dds_in_q_tdata, dds_in_i_tdata}), //48 = WIDTH*2
/* Phase input from NCO */
.s_axis_phase_tvalid(phase_sync_tvalid),
.s_axis_phase_tready(phase_sync_tready), // used in the axi_sync
.s_axis_phase_tlast(phase_sync_tlast),
.s_axis_phase_tdata(phase_sync_tdata), //24 bit = WIDTH
/* IQ output */
.m_axis_dout_tlast(dds_out_tlast),
.m_axis_dout_tvalid(dds_out_tvalid),
.m_axis_dout_tready(ddc_chain_tready),
.m_axis_dout_tdata({dds_out_q_tdata, dds_out_i_tdata})
);
//48 = WIDTH*2
//chop off top byte because it's not actually used and we want to match expected gain/bit use found in freq shift
assign i_dds_clip = {dds_out_i_tdata[15:0],8'h00};
assign q_dds_clip = {dds_out_q_tdata[15:0],8'h00};
assign strobe_dds_clip = dds_out_tvalid & sample_out_tready;
assign last_cic_decimate_in = dds_out_tlast;
/** CIC DECIMATE **/
cic_decimate #(.WIDTH(WIDTH), .N(4), .MAX_RATE(CIC_MAX_DECIM)) cic_decimate_i (
.clk(clk), .reset(reset | clear),
.rate_stb(rate_changed_stb), .rate(cic_decim_rate), .strobe_in(strobe_dds_clip), .strobe_out(strobe_cic),
.last_in(last_cic_decimate_in), .last_out(last_cic), .signal_in(i_dds_clip), .signal_out(i_cic));
cic_decimate #(.WIDTH(WIDTH), .N(4), .MAX_RATE(CIC_MAX_DECIM)) cic_decimate_q (
.clk(clk), .reset(reset | clear),
.rate_stb(rate_changed_stb), .rate(cic_decim_rate), .strobe_in(strobe_dds_clip), .strobe_out(),
.last_in(1'b0), .last_out(), .signal_in(q_dds_clip), .signal_out(q_cic));
// Halfbands
wire nd1, nd2, nd3;
wire rfd1, rfd2, rfd3;
wire rdy1, rdy2, rdy3;
wire data_valid1, data_valid2, data_valid3;
localparam HB1_SCALE = 18;
localparam HB2_SCALE = 18;
localparam HB3_SCALE = 18;
// Track last sample as it propagates through the half band filters
// Note: Delays calibrated for specific pipeline delay in each hb filter
reg [5:0] hb1_in_cnt, hb2_in_cnt, hb3_in_cnt;
reg [4:0] hb1_out_cnt, hb2_out_cnt, hb3_out_cnt;
reg [4:0] hb1_last_cnt, hb2_last_cnt, hb3_last_cnt;
reg hb1_last_set, hb2_last_set, hb3_last_set;
reg last_hb1, last_hb2, last_hb3;
always @(posedge clk) begin
if (reset | clear) begin
hb1_in_cnt <= 'd0;
hb2_in_cnt <= 'd0;
hb3_in_cnt <= 'd0;
hb1_out_cnt <= 'd0;
hb2_out_cnt <= 'd0;
hb3_out_cnt <= 'd0;
hb1_last_cnt <= 'd0;
hb2_last_cnt <= 'd0;
hb3_last_cnt <= 'd0;
hb1_last_set <= 1'b0;
hb2_last_set <= 1'b0;
hb3_last_set <= 1'b0;
last_hb1 <= 1'b0;
last_hb2 <= 1'b0;
last_hb3 <= 1'b0;
end else begin
// HB1
if (strobe_cic & rfd1) begin
hb1_in_cnt <= hb1_in_cnt + 1'b1;
if (last_cic) begin
hb1_last_set <= 1'b1;
hb1_last_cnt <= hb1_in_cnt[5:1];
end
end
if (strobe_hb1) begin
hb1_out_cnt <= hb1_out_cnt + 1'b1;
end
// Avoid subtracting 1 from hb1_last_cnt by initializing hb1_out_cnt = 1
if (hb1_last_set & (hb1_out_cnt == hb1_last_cnt)) begin
last_hb1 <= 1'b1;
hb1_last_set <= 1'b0;
hb1_last_cnt <= 'd0;
end else if (last_hb1 & strobe_hb1 & rfd2) begin
last_hb1 <= 1'b0;
end
// HB2
if (strobe_hb1 & rfd2) begin
hb2_in_cnt <= hb2_in_cnt + 1'b1;
if (last_hb1) begin
hb2_last_set <= 1'b1;
hb2_last_cnt <= hb2_in_cnt[5:1];
end
end
if (strobe_hb2) begin
hb2_out_cnt <= hb2_out_cnt + 1'b1;
end
if (hb2_last_set & (hb2_out_cnt == hb2_last_cnt)) begin
last_hb2 <= 1'b1;
hb2_last_set <= 1'b0;
hb2_last_cnt <= 'd0;
end else if (last_hb2 & strobe_hb2 & rfd3) begin
last_hb2 <= 1'b0;
end
// HB3
if (strobe_hb2 & rfd3) begin
hb3_in_cnt <= hb3_in_cnt + 1'b1;
if (last_hb2) begin
hb3_last_set <= 1'b1;
hb3_last_cnt <= hb3_in_cnt[5:1];
end
end
if (strobe_hb3) begin
hb3_out_cnt <= hb3_out_cnt + 1'b1;
end
if (hb3_last_set & (hb3_out_cnt == hb3_last_cnt)) begin
last_hb3 <= 1'b1;
hb3_last_set <= 1'b0;
hb3_last_cnt <= 'd0;
end else if (last_hb3 & strobe_hb3) begin
last_hb3 <= 1'b0;
end
end
end
// Each filter will accept N-1 samples before outputting
// a sample. This logic "preloads" the pipeline with 0s
// so the first sample in pushes out a sample.
reg [5:0] hb1_cnt, hb2_cnt, hb3_cnt;
reg hb1_en, hb2_en, hb3_en, hb1_rdy, hb2_rdy, hb3_rdy;
generate
if (PRELOAD_HBS) begin
always @(posedge clk) begin
if (reset | clear) begin
hb1_cnt <= 0;
hb2_cnt <= 0;
hb3_cnt <= 0;
hb1_en <= 1'b1;
hb2_en <= 1'b1;
hb3_en <= 1'b1;
hb1_rdy <= 1'b0;
hb2_rdy <= 1'b0;
hb3_rdy <= 1'b0;
end else begin
if (hb1_en & rfd1) begin
if (hb1_cnt < 47) begin
hb1_cnt <= hb1_cnt + 1;
end else begin
hb1_en <= 1'b0;
end
end
if (data_valid1) begin
hb1_rdy <= 1'b1;
end
if (hb2_en & rfd2) begin
if (hb2_cnt < 47) begin
hb2_cnt <= hb2_cnt + 1;
end else begin
hb2_en <= 1'b0;
end
end
if (data_valid2) begin
hb2_rdy <= 1'b1;
end
if (hb3_en & rfd3) begin
if (hb3_cnt < 63) begin
hb3_cnt <= hb3_cnt + 1;
end else begin
hb3_en <= 1'b0;
end
end
if (data_valid3) begin
hb3_rdy <= 1'b1;
end
end
end
end else begin
always @(*) begin
hb1_en <= 1'b0;
hb2_en <= 1'b0;
hb3_en <= 1'b0;
hb1_rdy <= 1'b1;
hb2_rdy <= 1'b1;
hb3_rdy <= 1'b1;
end
end
endgenerate
assign ddc_chain_tready = sample_out_tready & hb1_rdy & hb2_rdy & hb3_rdy;
assign strobe_hb1 = data_valid1 & hb1_rdy;
assign strobe_hb2 = data_valid2 & hb2_rdy;
assign strobe_hb3 = data_valid3 & hb3_rdy;
assign nd1 = strobe_cic | hb1_en;
assign nd2 = strobe_hb1 | hb2_en;
assign nd3 = strobe_hb2 | hb3_en;
generate //no point in using a for loop generate because each hb is different.
if( NUM_HB > 0) begin
hbdec1 hbdec1 (
.clk(clk), // input clk
.sclr(reset | clear), // input sclr
.ce(1'b1), // input ce
.coef_ld(reload_go & reload_ld1), // input coef_ld
.coef_we(reload_go & reload_we1), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd1), // output rfd
.nd(nd1), // input nd
.din_1(i_cic), // input [23 : 0] din_1
.din_2(q_cic), // input [23 : 0] din_2
.rdy(rdy1), // output rdy
.data_valid(data_valid1), // output data_valid
.dout_1(i_hb1), // output [46 : 0] dout_1
.dout_2(q_hb1)); // output [46 : 0] dout_2
end else begin //if (NUM_HB <= 2)
assign rdy1 = 1'b1;
assign rfd1 = 1'b1;
assign data_valid1 = 1'b1;
assign i_hb1 = 'h0;
assign q_hb1 = 'h0;
end
if( NUM_HB > 1) begin
hbdec2 hbdec2 (
.clk(clk), // input clk
.sclr(reset | clear), // input sclr
.ce(1'b1), // input ce
.coef_ld(reload_go & reload_ld2), // input coef_ld
.coef_we(reload_go & reload_we2), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd2), // output rfd
.nd(nd2), // input nd
.din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1
.din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2
.rdy(rdy2), // output rdy
.data_valid(data_valid2), // output data_valid
.dout_1(i_hb2), // output [46 : 0] dout_1
.dout_2(q_hb2)); // output [46 : 0] dout_2
end else begin //if (NUM_HB <= 2)
assign rdy2 = 1'b1;
assign rfd2 = 1'b1;
assign data_valid2 = 1'b1;
assign i_hb2 = 'h0;
assign q_hb2 = 'h0;
end
if( NUM_HB > 2) begin
hbdec3 hbdec3 (
.clk(clk), // input clk
.sclr(reset | clear), // input sclr
.ce(1'b1), // input ce
.coef_ld(reload_go & reload_ld3), // input coef_ld
.coef_we(reload_go & reload_we3), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd3), // output rfd
.nd(nd3), // input nd
.din_1(i_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_1
.din_2(q_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_2
.rdy(rdy3), // output rdy
.data_valid(data_valid3), // output data_valid
.dout_1(i_hb3), // output [47 : 0] dout_1
.dout_2(q_hb3)); // output [47 : 0] dout_2
end else begin //if (NUM_HB <= 2)
assign rdy3 = 1'b1;
assign rfd3 = 1'b1;
assign data_valid3 = 1'b1;
assign i_hb3 = 'h0;
assign q_hb3 = 'h0;
end
endgenerate
reg [23:0] i_unscaled, q_unscaled;
reg strobe_unscaled;
reg last_unscaled;
//this state machine must be changed if the user wants 4 hbs
always @(posedge clk) begin
if (reset | clear) begin
i_unscaled <= 'd0;
q_unscaled <= 'd0;
last_unscaled <= 1'b0;
strobe_unscaled <= 1'b0;
end else begin
case(hb_rate)
2'd0 : begin
last_unscaled <= last_cic;
strobe_unscaled <= strobe_cic;
i_unscaled <= i_cic[23:0];
q_unscaled <= q_cic[23:0];
end
2'd1 : begin
last_unscaled <= last_hb1;
strobe_unscaled <= strobe_hb1;
i_unscaled <= i_hb1[23+HB1_SCALE:HB1_SCALE];
q_unscaled <= q_hb1[23+HB1_SCALE:HB1_SCALE];
end
2'd2 : begin
last_unscaled <= last_hb2;
strobe_unscaled <= strobe_hb2;
i_unscaled <= i_hb2[23+HB2_SCALE:HB2_SCALE];
q_unscaled <= q_hb2[23+HB2_SCALE:HB2_SCALE];
end
2'd3 : begin
last_unscaled <= last_hb3;
strobe_unscaled <= strobe_hb3;
i_unscaled <= i_hb3[23+HB3_SCALE:HB3_SCALE];
q_unscaled <= q_hb3[23+HB3_SCALE:HB3_SCALE];
end
endcase // case (hb_rate)
end
end
wire [42:0] i_scaled, q_scaled;
wire [23:0] i_clip, q_clip;
reg strobe_scaled;
reg last_scaled;
wire strobe_clip;
reg [1:0] last_clip;
MULT_MACRO #(
.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_I (.P(i_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({i_unscaled[23],i_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(reset | clear)); // 1-bit input active high reset
MULT_MACRO #(
.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_Q (.P(q_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({q_unscaled[23],q_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(reset | clear)); // 1-bit input active high reset
wire [31:0] sample_out;
reg sample_out_last;
always @(posedge clk) begin
if (reset | clear) begin
strobe_scaled <= 1'b0;
last_scaled <= 1'b0;
last_clip <= 'd0;
sample_out_last <= 1'b0;
end else begin
strobe_scaled <= strobe_unscaled;
last_scaled <= last_unscaled;
last_clip[1:0] <= {last_clip[0], last_scaled};
sample_out_last <= last_clip[1];
end
end
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_i (
.clk(clk), .reset(reset | clear), .in(i_scaled[42:14]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_q (
.clk(clk), .reset(reset | clear), .in(q_scaled[42:14]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16), .DISABLE_SD(1)) round_i (
.clk(clk), .reset(reset | clear), .in(i_clip), .strobe_in(strobe_clip), .out(sample_out[31:16]), .strobe_out(sample_out_stb));
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16), .DISABLE_SD(1)) round_q (
.clk(clk), .reset(reset | clear), .in(q_clip), .strobe_in(strobe_clip), .out(sample_out[15:0]), .strobe_out());
//FIFO_SIZE = 8 infers a bram fifo
strobed_to_axi #(
.WIDTH(32),
.FIFO_SIZE(8))
strobed_to_axi (
.clk(clk), .reset(reset), .clear(clear),
.in_stb(sample_out_stb), .in_data(sample_out), .in_last(sample_out_last),
.o_tdata(sample_out_tdata), .o_tlast(sample_out_tlast), .o_tvalid(sample_out_tvalid), .o_tready(sample_out_tready));
endmodule // ddc_chain
|