1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
//! The USRP digital down-conversion chain
module ddc_chain
#(
parameter BASE = 0,
parameter DSPNO = 0,
parameter WIDTH = 24
)
(input clk, input rst, input clr,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input set_stb_user, input [7:0] set_addr_user, input [31:0] set_data_user,
// From RX frontend
input [WIDTH-1:0] rx_fe_i,
input [WIDTH-1:0] rx_fe_q,
// To RX control
output [31:0] sample,
input run,
output strobe,
output [31:0] debug
);
localparam cwidth = 25;
localparam zwidth = 24;
wire ddc_enb;
wire [31:0] phase_inc;
reg [31:0] phase;
wire [17:0] scale_factor;
wire [cwidth-1:0] i_cordic, q_cordic;
wire [WIDTH-1:0] i_cordic_clip, q_cordic_clip;
wire [WIDTH-1:0] i_cic, q_cic;
wire [WIDTH-1:0] i_hb1, q_hb1;
wire [WIDTH-1:0] i_hb2, q_hb2;
wire strobe_cic, strobe_hb1, strobe_hb2;
wire enable_hb1, enable_hb2;
wire [7:0] cic_decim_rate;
reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux;
wire realmode;
wire swap_iq;
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
setting_reg #(.my_addr(BASE+1), .width(18)) sr_1
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({enable_hb1, enable_hb2, cic_decim_rate}),.changed());
setting_reg #(.my_addr(BASE+3), .width(2)) sr_3
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({realmode,swap_iq}),.changed());
// MUX so we can do realmode signals on either input
always @(posedge clk)
if(swap_iq)
begin
rx_fe_i_mux <= rx_fe_q;
rx_fe_q_mux <= realmode ? 0 : rx_fe_i;
end
else
begin
rx_fe_i_mux <= rx_fe_i;
rx_fe_q_mux <= realmode ? 0 : rx_fe_q;
end
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~ddc_enb)
phase <= 0;
else
phase <= phase + phase_inc;
//sign extension of cordic input
wire [WIDTH-1:0] to_ddc_chain_i, to_ddc_chain_q;
wire [cwidth-1:0] to_cordic_i, to_cordic_q;
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_i (.in(to_ddc_chain_i), .out(to_cordic_i));
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_q (.in(to_ddc_chain_q), .out(to_cordic_q));
// CORDIC 24-bit I/O
cordic_z24 #(.bitwidth(cwidth))
cordic(.clock(clk), .reset(rst), .enable(ddc_enb),
.xi(to_cordic_i),. yi(to_cordic_q), .zi(phase[31:32-zwidth]),
.xo(i_cordic),.yo(q_cordic),.zo() );
clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_i
(.clk(clk), .in(i_cordic), .strobe_in(1'b1), .out(i_cordic_clip));
clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_q
(.clk(clk), .in(q_cordic), .strobe_in(1'b1), .out(q_cordic_clip));
// CIC decimator 24 bit I/O
cic_strober cic_strober(.clock(clk),.reset(rst),.enable(ddc_enb),.rate(cic_decim_rate),
.strobe_fast(1),.strobe_slow(strobe_cic) );
cic_decim #(.bw(WIDTH))
decim_i (.clock(clk),.reset(rst),.enable(ddc_enb),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(i_cordic_clip),.signal_out(i_cic));
cic_decim #(.bw(WIDTH))
decim_q (.clock(clk),.reset(rst),.enable(ddc_enb),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(q_cordic_clip),.signal_out(q_cic));
// First (small) halfband 24 bit I/O
small_hb_dec #(.WIDTH(WIDTH)) small_hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(ddc_enb),
.stb_in(strobe_cic),.data_in(i_cic),.stb_out(strobe_hb1),.data_out(i_hb1));
small_hb_dec #(.WIDTH(WIDTH)) small_hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(ddc_enb),
.stb_in(strobe_cic),.data_in(q_cic),.stb_out(),.data_out(q_hb1));
// Second (large) halfband 24 bit I/O
wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate};
hb_dec #(.WIDTH(WIDTH)) hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(ddc_enb),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2));
hb_dec #(.WIDTH(WIDTH)) hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(ddc_enb),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2));
// round to 18 bits for multiplication (gain of 6 bits)
wire [17:0] i_hb2_rnd, q_hb2_rnd;
round #(.bits_in(WIDTH),.bits_out(18)) round_i_hb2 (.in(i_hb2), .out(i_hb2_rnd));
round #(.bits_in(WIDTH),.bits_out(18)) round_q_hb2 (.in(q_hb2), .out(q_hb2_rnd));
//scalar operation
wire [35:0] prod_i, prod_q;
MULT18X18S mult_i
(.P(prod_i), .A(i_hb2_rnd), .B(scale_factor), .C(clk), .CE(strobe_hb2), .R(rst) );
MULT18X18S mult_q
(.P(prod_q), .A(q_hb2_rnd), .B(scale_factor), .C(clk), .CE(strobe_hb2), .R(rst) );
//pipeline for the multiplier with clipping to 34 bits
wire [33:0] prod_reg_i, prod_reg_q;
wire strobe_mult;
clip_reg #(.bits_in(36),.bits_out(34)) clip_prod_i
(.clk(clk),.in(prod_i),.out(prod_reg_i),.strobe_in(strobe_hb2),.strobe_out(strobe_mult));
clip_reg #(.bits_in(36),.bits_out(34)) clip_prod_q
(.clk(clk),.in(prod_q),.out(prod_reg_q),.strobe_in(strobe_hb2),.strobe_out());
// Round final answer to 16 bits
wire [31:0] ddc_chain_out;
wire ddc_chain_stb;
round_sd #(.WIDTH_IN(34),.WIDTH_OUT(16)) round_i
(.clk(clk),.reset(rst), .in(prod_reg_i),.strobe_in(strobe_mult), .out(ddc_chain_out[31:16]), .strobe_out(ddc_chain_stb));
round_sd #(.WIDTH_IN(34),.WIDTH_OUT(16)) round_q
(.clk(clk),.reset(rst), .in(prod_reg_q),.strobe_in(strobe_mult), .out(ddc_chain_out[15:0]), .strobe_out());
dsp_rx_glue #(.DSPNO(DSPNO), .WIDTH(WIDTH)) custom(
.clock(clk), .reset(rst), .clear(clr), .enable(run),
.set_stb(set_stb_user), .set_addr(set_addr_user), .set_data(set_data_user),
.frontend_i(rx_fe_i_mux), .frontend_q(rx_fe_q_mux),
.ddc_in_i(to_ddc_chain_i), .ddc_in_q(to_ddc_chain_q),
.ddc_out_sample(ddc_chain_out), .ddc_out_strobe(ddc_chain_stb), .ddc_out_enable(ddc_enb),
.bb_sample(sample), .bb_strobe(strobe));
assign debug = {enable_hb1, enable_hb2, run, strobe, strobe_cic, strobe_hb1, strobe_hb2};
endmodule // ddc_chain
|