aboutsummaryrefslogtreecommitdiffstats
path: root/firmware/octoclock/OctoClock.c
blob: 07397601d5955c8fd4c31a5e8f45bd2a09a91312 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
/*
 * OctoClock.c
 *
 * V1.00 -- May 2013
 *
 *
 * V1.03 -- Correct the switch to be UP for Internal and DOWN for External
 *          This means that the bat handle "points at" (sort of) the lower-left LED, which
 *          is the "STATUS" LED, which gets lit up when the external 10 MHz is present
 *          The "10 MHz Signal Detect" code accepts a very wide range of "10 MHz" signals
 *          23 April 2013
 *
 *
 * V1.02 -- Make LEDs consistent with Chassis - Top LED is INTERNAL; middle is EXTERNAL; bottom is STATUS
 *
 * STATUS is ON if the 10 MHz external input is present.   19 April 2013
 *
 *
 * V1.01: Modify TI chip initialization to be in differentail mode
 * which allows 10 MHz input down to 0.1 Volts according to the datasheet.
 *
 *
 * New Version that supports CLOCK board Version 1.0
 *
 * Author: Michael@Cheponis.Com with code borrowed liberally from
 * previous AVR projects
 *
 */

/*
 * Copyright 2013 Ettus Research LLC
 */






/* CLKSEL0 = 1   SUT1..0 is 11   CKOPT = 0   CKSEL3..1 is 111  => big output swing, long time to start up */
/*

NOT in M103 compatibility mode,  no WDT, CKOPT full rail-to-rail  xtal osc, 16K CK (16K clock cycles),
additional delay 65ms for Crystal Oscillator, slowly rising power

Very conservative settings; if lower power osc required, change CKOPT to '1'  (UNPROGRAMMED)  or, if you will,
CKOPT = [ ]



M103C = [ ]
WDTON = [ ]
OCDEN = [ ]
JTAGEN = [X]
SPIEN = [X]
EESAVE = [ ]
BOOTSZ = 4096W_F000
BOOTRST = [ ]
CKOPT = [X]
BODLEVEL = 2V7
BODEN = [ ]
SUT_CKSEL = EXTHIFXTALRES_16KCK_64MS

EXTENDED = 0xFF (valid)
HIGH = 0x89 (valid)
LOW = 0xFF (valid)


*/

// No interrupts are required

#include "OctoClock-io.h"

#include <avr/io.h>
#include <avr/interrupt.h>


#ifdef On
#undef On
#endif

#ifdef Off
#undef OFf
#endif

#define Off	(0)
#define On (!Off)


// Important for the Serial Port, not used at the moment
#define	FOSC	(7372800)
#define BAUD	(115200)

#define MYUBRR FOSC/16/BAUD-1


#define wait() for(u16 u=14000; u; u--) asm("nop");



enum LEDs {Top,Middle,Bottom}; // Top is 0, Mid is 1, and Bottom is 2

void
led(enum LEDs which, int turn_it_on){
	
	u8 LED = 0x20 << which; // selects the proper bit
	
	if(turn_it_on)
		PORTC |= LED;
	else
		PORTC &= ~LED;
	
}


enum TI_Input_10_MHz {Primary_GPS, Secondary_Ext};

void setup_TI_CDCE18005(enum TI_Input_10_MHz);




/*****************************************************************************************

			SPI routines

******************************************************************************************/



/* All macros evaluate to compile-time constants */
 
/* *** helper macros * * */
 
/* turn a numeric literal into a hex constant
 (avoids problems with leading zeros)
 8-bit constants max value 0x11111111, always fits in unsigned long
 */
 #define HEX__(n) 0x##n##LU
 
/* 8-bit conversion function */
 #define B8__(x) ((x&0x0000000FLU)?1:0) \
 +((x&0x000000F0LU)?2:0) \
 +((x&0x00000F00LU)?4:0) \
 +((x&0x0000F000LU)?8:0) \
 +((x&0x000F0000LU)?16:0) \
 +((x&0x00F00000LU)?32:0) \
 +((x&0x0F000000LU)?64:0) \
 +((x&0xF0000000LU)?128:0)

// Damn, that is SERIOUS magic ... ;-)  Yes, I know how it works
// but it's pretty cool....

 
/* *** user macros *** */
 
/* for upto 8-bit binary constants */
 #define Bits_8(d) ((unsigned char)B8__(HEX__(d)))
 
/* for upto 16-bit binary constants, MSB first */
 #define Bits_16(dmsb,dlsb) (((unsigned short)Bits_8(dmsb)<<8) \
 + Bits_8(dlsb))
 
/* for upto 32-bit binary constants, MSB first */
 #define Bits_32(dmsb,db2,db3,dlsb) (((unsigned long)Bits_8(dmsb)<<24) \
 + ((unsigned long)Bits_8(db2)<<16) \
 + ((unsigned long)Bits_8(db3)<<8) \
 + Bits_8(dlsb))
 
/* Sample usage:
 Bits_8(01010101) = 85
 Bits_16(10101010,01010101) = 43605
 Bits_32(10000000,11111111,10101010,01010101) = 2164238933
 */
 


enum CDCE18005 {Reg0, Reg1, Reg2, Reg3, Reg4, Reg5, Reg6, Reg7, Reg8_Status_Control,
	  Read_Command=0xE, RAM_EEPROM_Unlock=0x1F, RAM_EEPROM_Lock=0x3f} 
	  TI_CDCE18005;

// Table of 32-bit constants to be written to the TI chip's registers.

// Damn, inconsistent data sheet!  Special settigns see p35 of TI datasheet

// For the GPS's 10 MHz output
u32 table_Pri_Ref[] = {

	Bits_32(1,01010100,0,0),	// Reg 0
	Bits_32(1,01010100,0,0),	// Outputs LVCMOS Positive&Negative Active - Non-inverted
	Bits_32(1,01010100,0,0),
	Bits_32(1,01010100,0,0),
	Bits_32(1,01010100,0,0),	// All have output divide ratio to be 1; Aux Output is OFF
	
	Bits_32(0,0,1001,11010100),  // Reg 5  LVCMOS in; p31 of TI datasheet
	
	Bits_32(1,0,0010000,0),		// Reg 6	// SCAS863A � NOVEMBER 2008 � REVISED JUNE 2011
	
	Bits_32(1,01000000,0,0),	// Reg 7
	//        76543210
	Bits_32(0,0,1,10000000) // Reg8  Status/Control
};


// Looks like it's doing the correct thing re: SPI interface
// This is *definitely* AC coupled.  I removed those resistors to +3.3 and ground
// signal looked no different with differential measurement.  Added 240+470 to 
// center tap of secondary side to bias up to approx 1.2V for proper LVDS
//
// For the External 10 MHz input   LVDS with external termination  -- Effectively DC coupled

u32 table_Sec_Ref[] = {
	Bits_32(0001,01010100,0,100000),// Reg 0 -- use Secondary Reference for all channels
	Bits_32(0001,01010100,0,100000),// Outputs LVCMOS Positive&Negative Active - Non-inverted
	Bits_32(0001,01010100,0,100000),
	Bits_32(0001,01010100,0,100000),
	Bits_32(0001,01010100,0,100000),
	
//	Bits_32(0,0,00001000,10010111),  // Reg 5  LVDS with External Termination p32 of TI datasheet
//	Bits_32(0,0,00001000,11010111),  // Reg 5  LVDS with INTERNAL Termination p32 of TI datasheet

// May 2013 -- Turn OFF the LVDS Safe Mode, as it supposedly causes input thresholds to be increased.

//     	Bits_32(0,0,1001,10011011),  // Reg 5, try again.  Pretty soon, try new board...

      	Bits_32(0,0,1,10011011),  // Reg 5, Failsafe OFF   b5.11 = 0
		  

//       	Bits_32(0,0,1001,11011011),  // Reg 5, try again.  Pretty soon, try new board...
	// Try with DC input termination;  bit 6 is a "1"  2013 March
	// Seems to not work correctly.

	
//	Bits_32(1,0,0000000,0),  // Reg 6; note that 6.12 must be 1 for LVDS w/External Termination, 0 int
//	Bits_32(1,0,0000000,0),  // Reg 6; try Internal and DC coupling
	Bits_32(1,0,10000,0),  // Reg 6; try again
	
	Bits_32(1,01000000,0,0),
	Bits_32(0,0,1,10000000) // Reg8  Status/Control
};

//; Table 19 conflicts with Tables 5 thru 9 - in how LVCMOS outputs are defined
// extra error in Table 9, for bits 24 and 25
//
// Could combine these into just table[][] with 1st subscript being 0 or 1 for Primary or Secondary
// Maybe want to to that.

int table_size = sizeof (table_Pri_Ref) / sizeof(u32);
//int table_size = 1; // Testing read and write of Register 0 -- don't want excess SPI transactions
//NOTE!!! Still need to shift left by 4 and OR in register, as defined in TI_CDCE18005 enum, above.


enum Levels {Lo, Hi};
	
#define CLK	(PA0) // Shift by 0 bits  (PA.0)
#define CE_	(PA1) // Is really the "Chip Disable" signal, as Hi disables SPI
#define MOSI	(PA2)
#define MISO	(PA3)
#define PD_	(PA4)
#define SYNC_	(PA5)

void
set_bit(u8  bit_number, enum Levels bit_value){

 if(bit_value == Hi)
	PORTA |= 1<<bit_number;
 else
	PORTA &= ~ (1<<bit_number);
}


bool
get_bit(u8  bit_number){
	asm("nop");
	
	u8 portA = PINA;	// Maybe something is strange they way PORTA is read?
//	USART_Transmit( hex_table [0xf & (portA >> 4)], Control );
//	USART_Transmit( hex_table [0xf & portA], Control );
//	USART_Transmit(CR, Control); USART_Transmit(LF,Control);
	
	return (portA &  1<< bit_number) > 0 ? TRUE : FALSE;
	//return (portA & 8) != 0; // It's always MISO, so nail it for the moment
}


void
send_SPI(u32 bits){
// Send 32 bits to TI chip, LSB first.
// Don't worry about reading any bits back at this
// time, although for production, may want to do that
// as an error-check / integrity check.

/*
#define CLK		(PA0) // Shift by 0 bits  (PA.0)
#define CE_		(PA1) // Is really the "Chip Disable" signal, as Hi disables SPI
#define MOSI	(PA2)
#define MISO	(PA3)
#define PD_		(PA4)
#define SYNC_	(PA5)
*/

//Basically, when the clock is low, one can set MOSI to anything, as it's ignored.

 set_bit(CE_, Lo);	// Start SPI transaction with TI chip
 
 for (u8 i=0; i<32; i++){  // Foreach bit we need to send
	set_bit(MOSI, ((bits & (1UL<<i)) ? Hi : Lo) );   // LSB first
	asm("nop"); // Need a little more delay before L->H on clock; (REALLY?)
	set_bit(CLK, Hi);
	set_bit(CLK, Lo);  // Pulse the clock to clock in the bit
 }
// 	USART_Transmit(CR, Control); USART_Transmit(LF,Control);
 //set_bit(MOSI, Lo); // Not needed, but keeps all bits zeros except /CE when idle
 set_bit(CE_, Hi);  // OK, transaction is over
//	USART_Transmit(CR, Control); USART_Transmit(LF,Control);
}

// Takes about 7.6 ms to init all regs (as seen on scope)
// There is a very interesting phenomenon that is occurring --- The bit-to-bit time 
// at the beginning of transmission is 15 usec.  However, as the number of bits
// shifted to the left increases (as i increases in the for() loop )
// the time between bits elongates.  It's about 37 usec between bits 
// 30 and 31 (the last 2 bits).  It's kinda cool, because it's easy to
// know when the new word begins because the clock pulses will be
// closer together.  

// See if it checks: (15+37)/2 = 26 usec between average bits
// 32 bits * 9 words * 26 usec = 7.49 ms --- but have to add
// in the little bit of time that CE_ goes high; so 7.6 ms
// is a very reasonable number.  (Assumes linear increase in
// time as the number of shifts goes up, which seems to
// work OK here.)
//
// Of course, using a table instead of doing those shifts all the
// time would fix this; but it (should not) doesn't matter for this
// SPI interface.
//
// So far, the first word looks good, and the beginning of writing
// Register 1 also looks good.
//






// enum TI_Input_10_MHz {Primary_GPS, Secondary_Ext};

void
reset_TI_CDCE18005(){
// First, reset the chip.  Or, if you will, pull /SYNC low then high
set_bit(CE_, Hi);
set_bit(PD_, Lo);
wait(); // This should put the EEPROM bits into the RAM -- we don't care, but should init the chip

set_bit(PD_, Hi); // Out of Power Down state
wait();

set_bit(SYNC_, Lo);
wait();
set_bit(SYNC_, Hi);

wait();
// Now, by gosh, that darn chip ought to be fully enabled!
}
	
void
setup_TI_CDCE18005(enum TI_Input_10_MHz which_input){
 // Send the table of data to init the clock distribution chip.  Uses SPI.
 u32 temp;
 
 //reset_TI_CDCE18005();   // This REALLY should not be necessary
 
 if(which_input == Primary_GPS){
	 
	 for(u8 i=0; i<table_size; i++){
		 temp = table_Pri_Ref[i]<<4;
		 temp |= i;
		// print_u32(temp); // Debug *mac* -- correct
		 send_SPI(temp); // Make sure the register's address is in the LSBs
	 }	
 }	
 else { // is Secondary_Ext -- External 10 MHz input from SMA connector
		
		 for(u8 i=0; i<table_size; i++){
			 temp = table_Sec_Ref[i]<<4;
			 temp |= i;
			 send_SPI(temp); // Make sure the register's address is in the LSBs
		 }
 }
}		 
u32 
receive_SPI(){
 u32 bits;
	
 bits = 0;
 
 set_bit(CE_, Hi); // Make sure we're inactive
 set_bit(CLK, Lo); // and clk line is inactive, too
 set_bit(MOSI,Lo); // Make our bit output zero, for good measure
 

 set_bit(CE_, Lo);	// Start SPI transaction with TI chip; MOSI is don't care

	for (u8 i=0; i<32; i++){  // Foreach bit we need to get
		bits >>= 1; // get ready for next bit - NOTE: Only do this if we REALLY are putting in another bit
		set_bit(CLK, Hi);	// CPU is so slow, it easily meets setup & hold times
		//                            76543210
		if( get_bit(MISO) ) bits |= 0x80000000; // because we receive the LSB first
		set_bit(CLK, Lo);  // Pulse the clock to clock in the bit
	}
 set_bit(CE_, Hi);  // OK, transaction is over

 return (u32)(bits >> 4); // Ditch the lower 4 bits, which only contain the address
}

u32
get_TI_CDCE18005(enum CDCE18005 which_register){
	u32 get_reg_value;
	
	get_reg_value = 0;
	get_reg_value = (0xf0 & which_register << 4) | Read_Command;
	send_SPI(get_reg_value); // This tells the TI chip to send us the reg. value requested
	return receive_SPI();
};


bool
check_TI_CDCE18005(enum TI_Input_10_MHz which_input, enum CDCE18005 which_register)	{
  //		USART_Transmit(CR, Control); USART_Transmit(LF,Control); //reset_TI_CDCE18005();
	if(which_input == Primary_GPS){
		u32 read_value = get_TI_CDCE18005(which_register);
		return read_value == table_Pri_Ref[which_register];	
	}
	else {
		u32 read_value = get_TI_CDCE18005(which_register);
		return read_value == table_Sec_Ref[which_register];
	}
};
// This could obviously be done more elegantly to share more code; but this is
// simple and easy to understand	








void
Setup_Atmel_IO_Ports(){
	
	
/////////////////////////////////////////////////////////////////////////////					
/*
 * PORT A
 * 
 *pin# Sig	Our Functional Name
 *
 * p51 PA0	CLK_CDCE	to U205 pin 24 --   L-->H edge latches MOSI and MISO in CDCE18005
 * p50 PA1	CE_CDCE		Low = Chip Enabled for SPI comm  to U205 pin 25
 * p49 PA2	MOSI_CDCE	Goes to CDCE18005 - U205 pin 23
 * p48 PA3	MISO_CDCE	Input	Comes from U205 pin 22
 * p47 PA4	PD_CDCE		Low = Chip is in Power-Down state; is Hi for normal operation U205 pin 12
 * p46 PA5	SYNC_CDCE	Low = Chip is sync'd with interal dividers; Hi for normal operation U205 pin 14
 * p45 PA6	PPS_SEL		Low --> PPS_EXT selected; Hi -> PPS_GPS selected;    to U203 pin 1
 * p44 PA7	gps_lock	Input	Comes from M9107 - U206 pin 3
 *
 */

// Bit #:  76543210
PORTA = Bits_8(00110010); // /pd_cdcd, /sync_code, /ce need to be 1 (disabled) to start
DDRA =   1<<DDA6 | 1<<DDA5 | 1<<DDA4 | 1<<DDA2 | 1<<DDA1 | 1<<DDA0; //// all bits are outputs, except PA7 (gps_lock) and PA3 (MISO_CDCE) are inputs


					
/////////////////////////////////////////////////////////////////////////////					
/*
 * Port B
 *
 *pin# Sig	Our Functional Name
 *
 * p10 PB0	Ethernet /SEN
 * p11 PB1	Ethernet SCLK
 * p12 PB2	Ethernet MOSI
 * p13 PB3	Ethernet MISO
 * p14 PB4	Not connected, set as output with value 0
 * p15 PB5	Ethernet /RESET  -- Set to HI for normal use, weak input
 * p16 PB6	Ethernet /WOL  --- Wake on LAN -- set, weak input
 * p17 PB7	Not connected, set as output with value 0
 *
 */
 

 PORTB = Bits_8(01100001);		// Initial Value is all zeros
 DDRB = 1<<DDB2 | 1<<DDB4 | 1<<DDB7;  // MOSI is an output; the Not Connected pins are also outputs


					
/////////////////////////////////////////////////////////////////////////////					
/*
 * Port C
 *
 *pin# Sig	Our Functional Name
 *
 * p34 PC0	Not connected, set as output with value 0
 * p35 PC1	Reference Select Switch INPUT
 * p36 PC2	Not connected, set as output with value 0
 * p37 PC3	Not connected, set as output with value 0
 * p38 PC4	Not connected, set as output with value 0
 * p40 PC5	"Top LED" of D103 3-stack of green LEDs
 * p41 PC6	"Middle LED"
 * p43 PC7	"Bottom LED"
 *
 */
PORTC = 0;		// Initial Value is all zeros
DDRC =  ~( 1<<DDC1 ); 	// All bits are outputs, except PC1. including the 5 Not Connected bits

 

/////////////////////////////////////////////////////////////////////////////					
/*
 * Port D
 *
 *pin# Sig	Our Functional Name
 *
 * p25 PD0	Ethernet /INT input
 * p26 PD1	GPS NMEA bit, output
 * p27 PD2	GPS Serial Out  (RXD; INT1)  INPUT
 * p28 PD3	GPS Serial In   (TXD)        OUTPUT
 * p29 PD4	GPS Present, INPUT  hi = Present
 * p30 PD5	Not connected, set as output with value 0
 * p31 PD6	Not connected, set as output with value 0
 * p32 PD7	Not connected, set as output with value 0
 *
 */
PORTD = 0;		// Initial Value is all zeros
DDRD =  1<<DDD1 | 1<<DDD3;

					

/////////////////////////////////////////////////////////////////////////////					
/*
 * Port E
 *
 *pin# Sig Dir	Our Functional Name
 *
 * p2 PE0 In	avr_rxd	(Also MOSI [PDI] when used for SPI programming of the chip)
 * p3 PE1 Out	avr_txd (Also MISO [PDO] when used for SPI programming of the chip)
 * p4 PE2 In	avr_cts
 * p5 PE3 Out	avr_rts  DUE TO MOD, make this an input, too (as we go direct GPSDO to FPGA via level translators)
 * p6 PE4 In	PPS_GPS
 * p7 PE5 In	PPS_EXT_n
 * p8 PE6 In	Not Connected
 * p9 PE7 In	Not Connected
 *
 */
PORTE = 0;
DDRE =  1<<DDE1; // make outputs, set to zero.  PE1 is usart0 TXD


/////////////////////////////////////////////////////////////////////////////					
/*
 * Port F
 *
 * Split into 2 nibbles; goes to Amp/Filter board to select ENABLE and two bits to select band
 * one bit per nibble is not connected.
 *
 * pin Sig Dir		Our Functional Name
 * num
 *
 * p61 PF0 Out		J117 pin 3  (J117 pins 1 and 2 are GND)
 * p60 PF1 Out		J117 pin 4
 * p59 PF2 Out		J117 pin 5
 * p58 PF3 Out		J117 pin 6
 * p57 PF4 Out		J118 pin 3  (J118 pins 1 and 2 are GND)
 * p56 PF5 Out		J118 pin 4
 * p55 PF6 Out		J118 pin 5
 * p54 PF7 Out		J118 pin 6
 *
 */
 

PORTF = 0;		// Initial Value is all zeros; be sure ENABLE bits are active high!!!!
DDRF =  0xff;	// All bits are outputs



	
led(Middle,On);
setup_TI_CDCE18005(Primary_GPS);	// 10 MHz from Internal Source

led(Top,On); 
PORTA |= (1<<PA6);	// PPS from Internal source


}

/////////////////////////////////////////////////////////////////////////////

//enum TI_Input_10_MHz {Primary_GPS, Secondary_Ext};

//setup_TI_CDCE18005(enum TI_Input_10_MHz);

bool  Global_GPS_Present = (bool)FALSE;
bool Global_Ext_Ref_Is_Present = (bool)FALSE; // NOT PRESENT unless proven so...
// This was initially global becasue it was to be set in an interrupt routine
// But it turned out interrupts were not needed.  But kept this in because
// although it's a Global, it is the only one, and it makes it easier to
// go back and use interrupts if absolutely necessary.  It could be
// removed and replaced with some local variable that gets passed
// around, but, really, it seems OK to me like this.



void
LEDs_Off(){
 led(Top,Off);
 led(Middle,Off);
 led(Bottom,Off);
}


void
Force_Internal(){
  // led(Middle,On);
 led(Top,On);
 led(Middle,Off);
 led(Bottom,On);

 setup_TI_CDCE18005(Primary_GPS);

 // Set PPS to Primary (1) n.b.:  "1" in general means "Internal" for all such signals
 PORTA |= (1<<PA6);	// PPS from Internal source
}


void
Force_External(){
  // led(Middle, Off);
  led(Top, Off);
  led(Middle, On);
  led(Bottom, On);

 setup_TI_CDCE18005(Secondary_Ext);

 // Set PPS to External (0
 PORTA &= ~(1<<PA6);	// PPS from External source
}


/////////////////////////////////////////////////////////////////////////////

void
Prefer_Internal(){

  if(Global_GPS_Present)
    Force_Internal();
  else if(Global_Ext_Ref_Is_Present)
    Force_External();
  else
    LEDs_Off();
}





void
Prefer_External(){   // IF EXTERNAL IS OK, then do this stuff
  // if external is NOT OK, then force Internal
  if(Global_Ext_Ref_Is_Present)
    Force_External();
  else if(Global_GPS_Present)
    Force_Internal();
  else
    LEDs_Off();
}
 


// Turns out, we don't need interrupts


#if 0
//;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
//;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
//;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

u8 Global_Tick_Counter = (u8)0;
u8 Global_Ext_Ref_Detect_Counter = (u8)0;

// External Reference Detect interrupt; nominally at 610 Hz (10 MHz / 2**14 )
ISR ( _VECTOR(1)){
  asm("cli");	// Global Interrupt Disable --- enable with SEI if desired later


  Global_Ext_Ref_Detect_Counter++ ;  // We reset this elsewhere

  asm("sei");	// Global Interrupt Enable
}


// Timer 0 Overflow Handler
ISR ( _VECTOR(16)){
  static u8 led_state = Off;

  asm("cli");	// Global Interrupt Disable --- enable with SEI if desired later

  led_state = (led_state ? Off : On);

  asm("sei");	// Global Interrupt Enable
}

//;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
//;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
//;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;



void
Setup_Atmel_Interrupts(){
  // Timer 0 is all we need -- but simplest if both Timer 0 AND IRQ1 (ext_ref_detect 610 Hz signal) also
  // Nah, don't need this...
}

#endif



bool
Check_What_Is_Present(){

  Global_GPS_Present = (PIND & (1<<DDD4)) != 0; // See if +5 scaled to 3.3 from GPSDO is there


  volatile u8 portE = PINE;
  volatile u8 prev, now;

  prev = ( portE & (1 << DDE7) ?  1 : 0); // Get PREVIOUS state of the input
  for(u16 c=1; c; c++){
    portE = PINE;
    now = ( portE & (1 << DDE7) ?  1 : 0);
    if(prev != now){
      Global_Ext_Ref_Is_Present = (bool)TRUE;
      return (bool)TRUE;
    }
  }
  // Else, if it didn't wiggle in that time, then it didn't wiggle
  // So ext. is NOT present

  Global_Ext_Ref_Is_Present = (bool)FALSE;
  return (bool)FALSE;

}


bool
get_Switch_State(){
 u8  portC = PINC;

 // return (bool)(portC &  (1<<DDC1) ? On : Off); 
 return (bool)(portC &  (1<<DDC1) ? Off : On);  // UP is prefer internal,
                                                // DOWN is prefer external
}


/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
//                            M A I N                                      //
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////

	
int 
main(void){

  bool Old_Switch_State, Current_Switch_State, Old_Global_Ext_Ref_Is_Present = FALSE;



 asm("cli");	// Global Interrupt Disable --- enable with SEI if desired later

 Setup_Atmel_IO_Ports();

 // Setup_Atmel_Interrupts();


 /*
  * DO THIS FOREVER:
  *  
  *  
  * get_switch_state
  *  
  * if SWITCH_CHANGED:
  *  
  *  
  *   if PREFER_INTERNAL:
  *     if INTERNAL_PRESENT do_internal
  *     else if EXTERNAL_PRESENT do_external
  *     else LEDs OFF
  *
  *   if PREFER_EXTERNAL:
  *     if EXTERNAL_PRESENT do_external
  *     else if INTERNAL_PRESENT do_internal
  *     else LEDs OFF
  *
  */




 Old_Switch_State = ! get_Switch_State();

 // Because down below, we use this to get state swap...
 // So we arbitrarily set the PREVIOUS state to be the "other" state
 // so that, below, we trigger what happens when the switch changes
 // This first "change" is therefore artificial to keep the logic, below, cleaner
  
 while(TRUE) {
   Check_What_Is_Present(); // Set "Global_Ext_Ref_Is_Present" and "Global_GPS_Present"

   // Off means "Prefer External" -- DOWN
   // On  means "Prefer Internal" -- UP

   Current_Switch_State = get_Switch_State();
  
   if( (Current_Switch_State != Old_Switch_State)  || 
       (Global_Ext_Ref_Is_Present != Old_Global_Ext_Ref_Is_Present) ) {

     Old_Switch_State = Current_Switch_State;
     Old_Global_Ext_Ref_Is_Present = Global_Ext_Ref_Is_Present;

     if(Current_Switch_State == On)
       Prefer_Internal();
     else
       Prefer_External();
   } // if()  checking for different switch status


 } // WHILE() loop


} /*end  "main" of  Program 'OctoClock.c */