1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
module tx_prot_engine
(input clk, input rst,
// To MAC
input Tx_mac_wa,
output Tx_mac_wr,
output [31:0] Tx_mac_data,
output [1:0] Tx_mac_BE,
output Tx_mac_sop,
output Tx_mac_eop,
// To buffer interface
input [31:0] rd_dat_i,
output rd_read_o,
output rd_done_o,
output rd_error_o,
input rd_sop_i,
input rd_eop_i,
// To control
input set_stb,
input [7:0] set_addr,
input [31:0] set_data,
// Protocol Stuff
input [15:0] rx_fifo_status,
input [7:0] rx_seqnum
//input [7:0] tx_channel,
//input [7:0] tx_flags
);
wire [3:0] hdr_adr;
wire [31:0] hdr_dat;
wire [7:0] tx_channel;
header_ram #(.REGNUM(32),.WIDTH(32)) tx_header_ram
(.clk(clk),.set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),
.addr(hdr_adr),.q(hdr_dat));
setting_reg #(.my_addr(32)) sr_channel
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),.in(set_data),
.out(tx_channel),.changed());
// Might as well use a shortfifo here since they are basically free
wire empty, full, sfifo_write, sfifo_read;
wire [33:0] sfifo_in, sfifo_out;
shortfifo #(.WIDTH(34)) txmac_sfifo
(.clk(clk),.rst(rst),.clear(0),
.datain(sfifo_in),.write(sfifo_write),.full(full),
.dataout(sfifo_out),.read(sfifo_read),.empty(empty));
// MAC side signals
// Inputs -- Tx_mac_wa, sfifo_out, empty
// outputs -- sfifo_read, Tx_mac_data, Tx_mac_wr, Tx_mac_BE, Tx_mac_sop, Tx_mac_eop
// We are allowed to do one more write after we are told the FIFO is full
// This allows us to register the _wa signal and speed up timing.
reg tx_mac_wa_d1;
always @(posedge clk)
tx_mac_wa_d1 <= Tx_mac_wa;
reg [2:0] prot_state;
localparam PROT_IDLE = 0;
localparam PROT_HDR1 = 1;
localparam PROT_HDR2 = 2;
localparam PROT_HDR3 = 3;
localparam PROT_HDR4 = 4;
localparam PROT_HDR5 = 5;
localparam PROT_PKT = 6;
reg [7:0] tx_seqnum;
reg all_match;
always @(posedge clk)
if(rst)
tx_seqnum <= 0;
else if(set_stb & (set_addr == 36))
tx_seqnum <= set_data[7:0];
else if(tx_mac_wa_d1 & all_match & (prot_state == PROT_HDR5))
tx_seqnum <= tx_seqnum + 1;
always @(posedge clk)
if(rst)
prot_state <= PROT_IDLE;
else
if(tx_mac_wa_d1 & ~empty)
case(prot_state)
PROT_IDLE :
prot_state <= PROT_HDR1;
PROT_HDR1 :
prot_state <= PROT_HDR2;
PROT_HDR2 :
prot_state <= PROT_HDR3;
PROT_HDR3 :
prot_state <= PROT_HDR4;
PROT_HDR4 :
prot_state <= PROT_HDR5;
PROT_HDR5 :
prot_state <= PROT_PKT;
PROT_PKT :
if(sfifo_out[32] & ~empty)
prot_state <= PROT_IDLE;
default :
prot_state <= PROT_IDLE;
endcase // case(prot_state)
assign hdr_adr = {1'b0,prot_state};
wire match = (hdr_dat == sfifo_out[31:0]);
always @(posedge clk)
if(prot_state == PROT_IDLE)
all_match <= 1;
else if(tx_mac_wa_d1 & ~empty &
((prot_state==PROT_HDR1)|(prot_state==PROT_HDR2)|(prot_state==PROT_HDR3)))
all_match <= all_match & match;
localparam ETH_TYPE = 16'hBEEF;
assign Tx_mac_data =
((prot_state == PROT_HDR5) & all_match) ? {rx_fifo_status,tx_seqnum,rx_seqnum} :
sfifo_out[31:0];
assign sfifo_read = (prot_state != PROT_IDLE) & ~empty & tx_mac_wa_d1;
assign Tx_mac_wr = sfifo_read;
assign Tx_mac_BE = 0; // Since we only deal with packets that are multiples of 32 bits long
assign Tx_mac_sop = sfifo_out[33];
assign Tx_mac_eop = sfifo_out[32];
// BUFFER side signals
reg xfer_active;
always @(posedge clk)
if(rst)
xfer_active <= 0;
else if(rd_eop_i & ~full)
xfer_active <= 0;
else if(rd_sop_i)
xfer_active <= 1;
assign sfifo_in = {rd_sop_i, rd_eop_i, rd_dat_i};
assign sfifo_write = xfer_active & ~full;
assign rd_read_o = sfifo_write;
assign rd_done_o = 0; // Always send everything we're given?
assign rd_error_o = 0; // No possible error situations?
endmodule // tx_prot_engine
|