1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
// FIFO Interface to the 2K buffer RAMs
// Read port is read-acknowledge
// FIXME do we want to be able to interleave reads and writes?
module buffer_int
#(parameter BUFF_NUM = 0)
(// Control Interface
input clk,
input rst,
input [31:0] ctrl_word,
input go,
output done,
output error,
output idle,
// Buffer Interface
output en_o,
output we_o,
output reg [8:0] addr_o,
output [31:0] dat_to_buf,
input [31:0] dat_from_buf,
// Write FIFO Interface
input [31:0] wr_dat_i,
input wr_write_i,
input wr_done_i,
input wr_error_i,
output reg wr_ready_o,
output reg wr_full_o,
// Read FIFO Interface
output [31:0] rd_dat_o,
input rd_read_i,
input rd_done_i,
input rd_error_i,
output reg rd_sop_o,
output reg rd_eop_o
);
reg [31:0] ctrl_reg;
reg go_reg;
always @(posedge clk)
go_reg <= go;
always @(posedge clk)
if(rst)
ctrl_reg <= 0;
else
if(go & (ctrl_word[31:28] == BUFF_NUM))
ctrl_reg <= ctrl_word;
wire [8:0] firstline = ctrl_reg[8:0];
wire [8:0] lastline = ctrl_reg[17:9];
wire [3:0] step = ctrl_reg[21:18];
wire read = ctrl_reg[22];
wire write = ctrl_reg[23];
wire clear = ctrl_reg[24];
//wire [2:0] port = ctrl_reg[27:25]; // Ignored in this block
//wire [3:0] buff_num = ctrl_reg[31:28]; // Ignored here ?
assign dat_to_buf = wr_dat_i;
assign rd_dat_o = dat_from_buf;
localparam IDLE = 3'd0;
localparam PRE_READ = 3'd1;
localparam READING = 3'd2;
localparam WRITING = 3'd3;
localparam ERROR = 3'd4;
localparam DONE = 3'd5;
reg [2:0] state;
always @(posedge clk)
if(rst)
begin
state <= IDLE;
rd_sop_o <= 0;
rd_eop_o <= 0;
wr_ready_o <= 0;
wr_full_o <= 0;
end
else
if(clear)
begin
state <= IDLE;
rd_sop_o <= 0;
rd_eop_o <= 0;
wr_ready_o <= 0;
wr_full_o <= 0;
end
else
case(state)
IDLE :
if(go_reg & read)
begin
addr_o <= firstline;
state <= PRE_READ;
end
else if(go_reg & write)
begin
addr_o <= firstline;
state <= WRITING;
wr_ready_o <= 1;
end
PRE_READ :
begin
state <= READING;
addr_o <= addr_o + 1;
rd_sop_o <= 1;
end
READING :
if(rd_error_i)
state <= ERROR;
else if(rd_done_i)
state <= DONE;
else if(rd_read_i)
begin
rd_sop_o <= 0;
addr_o <= addr_o + 1;
if(addr_o == lastline)
rd_eop_o <= 1;
else
rd_eop_o <= 0;
if(rd_eop_o)
state <= DONE;
end
WRITING :
begin
if(wr_write_i)
addr_o <= addr_o + 1; // This was the timing problem, so now it doesn't depend on wr_error_i
if(wr_error_i)
begin
state <= ERROR;
wr_ready_o <= 0;
end
else
begin
if(wr_write_i)
begin
wr_ready_o <= 0;
if(addr_o == (lastline-1))
wr_full_o <= 1;
if(addr_o == lastline)
state <= DONE;
end
if(wr_done_i)
begin
state <= DONE;
wr_ready_o <= 0;
end
end // else: !if(wr_error_i)
end // case: WRITING
DONE :
begin
rd_eop_o <= 0;
rd_sop_o <= 0;
wr_ready_o <= 0;
wr_full_o <= 0;
end
endcase // case(state)
// FIXME ignores step for now
assign we_o = (state == WRITING) && wr_write_i; // FIXME potential critical path
// IF this is a timing problem, we could always write when in this state
assign en_o = ~((state==READING)& ~rd_read_i); // FIXME potential critical path
assign done = (state == DONE);
assign error = (state == ERROR);
assign idle = (state == IDLE);
endmodule // buffer_int
// These are 2 other ways for doing the WRITING state, both work. First one is faster, but confusing
/*
begin
// Gen 4 values -- state, wr_ready_o, addr_o, wr_full_o
if(~wr_error_i & wr_write_i & (addr_o == (lastline-1)))
wr_full_o <= 1;
if(wr_error_i | wr_write_i | wr_done_i)
wr_ready_o <= 0;
if(wr_error_i)
state <= ERROR;
else if(wr_done_i | (wr_write_i & (addr_o == lastline)))
state <= DONE;
// This one was the timing problem... now we increment addr_o even if there is an error
if(wr_write_i)
addr_o <= addr_o + 1;
end // case: WRITING
*/
/* begin
if(wr_error_i)
begin
state <= ERROR;
wr_ready_o <= 0;
end
else
begin
if(wr_write_i)
begin
wr_ready_o <= 0;
addr_o <= addr_o + 1;
if(addr_o == (lastline-1))
wr_full_o <= 1;
if(addr_o == lastline)
state <= DONE;
end
if(wr_done_i)
begin
state <= DONE;
wr_ready_o <= 0;
end
end // else: !if(wr_error_i)
end // case: WRITING
*/
// Unused old code
//assign rd_empty_o = (state != READING); // && (state != PRE_READ);
//assign rd_empty_o = rd_empty_reg; // timing fix?
//assign rd_ready_o = (state == READING);
//assign rd_ready_o = ~rd_empty_reg; // timing fix?
//wire rd_en = (state == PRE_READ) || ((state == READING) && rd_read_i);
//wire wr_en = (state == WRITING) && wr_write_i; // IF this is a timing problem, we could always enable when in this state
//assign en_o = rd_en | wr_en;
// assign wr_full_o = (state != WRITING);
// assign wr_ready_o = (state == WRITING);
|