module prot_eng_tx #(parameter BASE=0) (input clk, input reset, input clear, input set_stb, input [7:0] set_addr, input [31:0] set_data, input [35:0] datain, input src_rdy_i, output dst_rdy_o, output [35:0] dataout, output src_rdy_o, input dst_rdy_i); wire src_rdy_int1, dst_rdy_int1; wire src_rdy_int2, dst_rdy_int2; wire [35:0] data_int1, data_int2; // Shortfifo on input to guarantee no deadlock fifo_short #(.WIDTH(36)) head_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(datain), .src_rdy_i(src_rdy_i), .dst_rdy_o(dst_rdy_o), .dataout(data_int1), .src_rdy_o(src_rdy_int1), .dst_rdy_i(dst_rdy_int1), .space(),.occupied() ); // Store header values in a small dual-port (distributed) ram reg [31:0] header_ram[0:63]; reg [3:0] state; reg [1:0] port_sel; always @(posedge clk) if(set_stb & ((set_addr & 8'hC0) == BASE)) header_ram[set_addr[5:0]] <= set_data; wire [31:0] header_word = header_ram[{port_sel[1:0],state[3:0]}]; reg [15:0] pre_checksums [0:3]; always @(posedge clk) if(set_stb & (set_addr == (BASE+6))) pre_checksums[set_addr[5:4]] <= set_data[15:0]; wire [15:0] pre_checksum = header_ram[port_sel[1:0]]; // Protocol State Machine reg [15:0] length; wire [15:0] ip_length = length + 28; // IP HDR + UDP HDR wire [15:0] udp_length = length + 8; // UDP HDR reg sof_o; reg [31:0] prot_data; always @(posedge clk) if(reset) begin state <= 0; sof_o <= 0; end else if(src_rdy_int1 & dst_rdy_int2) case(state) 0 : begin port_sel <= data_int1[18:17]; length <= data_int1[15:0]; sof_o <= 1; if(data_int1[16]) state <= 1; else state <= 12; end 12 : begin sof_o <= 0; if(data_int1[33]) // eof state <= 0; end default : begin sof_o <= 0; state <= state + 1; end endcase // case (state) wire [15:0] ip_checksum; add_onescomp #(.WIDTH(16)) add_onescomp (.A(pre_checksum),.B(ip_length),.SUM(ip_checksum)); reg [15:0] ip_checksum_reg; always @(posedge clk) ip_checksum_reg <= ip_checksum; always @* case(state) 1 : prot_data <= header_word; // ETH, top half ignored 2 : prot_data <= header_word; // ETH 3 : prot_data <= header_word; // ETH 4 : prot_data <= header_word; // ETH 5 : prot_data <= { header_word[31:16], ip_length }; // IP 6 : prot_data <= header_word; // IP 7 : prot_data <= { header_word[31:16], (16'hFFFF ^ ip_checksum_reg) }; // IP 8 : prot_data <= header_word; // IP 9 : prot_data <= header_word; // IP 10: prot_data <= header_word; // UDP 11: prot_data <= { udp_length, header_word[15:0]}; // UDP default : prot_data <= data_int1[31:0]; endcase // case (state) assign data_int2 = { data_int1[35:33] & {3{state[3]}}, sof_o, prot_data }; assign dst_rdy_int1 = dst_rdy_int2 & ((state == 0) | (state == 12)); assign src_rdy_int2 = src_rdy_int1 & (state != 0); // Shortfifo on output to guarantee no deadlock fifo_short #(.WIDTH(36)) tail_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(data_int2), .src_rdy_i(src_rdy_int2), .dst_rdy_o(dst_rdy_int2), .dataout(dataout), .src_rdy_o(src_rdy_o), .dst_rdy_i(dst_rdy_i), .space(),.occupied() ); endmodule // prot_eng_tx