// // Copyright 2011-2012 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //! The USRP digital down-conversion chain module ddc_chain #(parameter BASE = 0, parameter DSPNO = 0) (input clk, input rst, input set_stb, input [7:0] set_addr, input [31:0] set_data, input set_stb_user, input [7:0] set_addr_user, input [31:0] set_data_user, // From RX frontend input [23:0] rx_fe_i, input [23:0] rx_fe_q, // To RX control output [31:0] sample, input run, output strobe, output [31:0] debug ); wire [31:0] phase_inc; reg [31:0] phase; wire [17:0] scale_factor; wire [24:0] i_cordic, q_cordic; wire [23:0] i_cordic_clip, q_cordic_clip; wire [23:0] i_cic, q_cic; wire [23:0] i_hb1, q_hb1; wire [23:0] i_hb2, q_hb2; wire strobe_cic, strobe_hb1, strobe_hb2; wire enable_hb1, enable_hb2; wire [7:0] cic_decim_rate; reg [23:0] rx_fe_i_mux, rx_fe_q_mux; wire realmode; wire swap_iq; setting_reg #(.my_addr(BASE+0)) sr_0 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out(phase_inc),.changed()); setting_reg #(.my_addr(BASE+1), .width(18)) sr_1 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out(scale_factor),.changed()); setting_reg #(.my_addr(BASE+2), .width(10)) sr_2 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out({enable_hb1, enable_hb2, cic_decim_rate}),.changed()); setting_reg #(.my_addr(BASE+3), .width(2)) sr_3 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out({realmode,swap_iq}),.changed()); // MUX so we can do realmode signals on either input always @(posedge clk) if(swap_iq) begin rx_fe_i_mux <= rx_fe_q; rx_fe_q_mux <= realmode ? 24'd0 : rx_fe_i; end else begin rx_fe_i_mux <= rx_fe_i; rx_fe_q_mux <= realmode ? 24'd0 : rx_fe_q; end // NCO always @(posedge clk) if(rst) phase <= 0; else if(~run) phase <= 0; else phase <= phase + phase_inc; wire [23:0] to_cordic_i, to_cordic_q; // CORDIC 24-bit I/O cordic_z24 #(.bitwidth(25)) cordic(.clock(clk), .reset(rst), .enable(run), .xi({to_cordic_i[23],to_cordic_i}),. yi({to_cordic_q[23],to_cordic_q}), .zi(phase[31:8]), .xo(i_cordic),.yo(q_cordic),.zo() ); clip_reg #(.bits_in(25), .bits_out(24)) clip_i (.clk(clk), .in(i_cordic), .strobe_in(1'b1), .out(i_cordic_clip)); clip_reg #(.bits_in(25), .bits_out(24)) clip_q (.clk(clk), .in(q_cordic), .strobe_in(1'b1), .out(q_cordic_clip)); // CIC decimator 24 bit I/O cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate), .strobe_fast(1),.strobe_slow(strobe_cic) ); cic_decim #(.bw(24)) decim_i (.clock(clk),.reset(rst),.enable(run), .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), .signal_in(i_cordic_clip),.signal_out(i_cic)); cic_decim #(.bw(24)) decim_q (.clock(clk),.reset(rst),.enable(run), .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), .signal_in(q_cordic_clip),.signal_out(q_cic)); // First (small) halfband 24 bit I/O small_hb_dec #(.WIDTH(24)) small_hb_i (.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run), .stb_in(strobe_cic),.data_in(i_cic),.stb_out(strobe_hb1),.data_out(i_hb1)); small_hb_dec #(.WIDTH(24)) small_hb_q (.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run), .stb_in(strobe_cic),.data_in(q_cic),.stb_out(),.data_out(q_hb1)); // Second (large) halfband 24 bit I/O wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate}; hb_dec #(.WIDTH(24)) hb_i (.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb), .stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2)); hb_dec #(.WIDTH(24)) hb_q (.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb), .stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2)); //scalar operation (gain of 6 bits) wire [35:0] prod_i, prod_q; MULT18X18S mult_i (.P(prod_i), .A(i_hb2[23:6]), .B(scale_factor), .C(clk), .CE(strobe_hb2), .R(rst) ); MULT18X18S mult_q (.P(prod_q), .A(q_hb2[23:6]), .B(scale_factor), .C(clk), .CE(strobe_hb2), .R(rst) ); //pipeline for the multiplier (gain of 10 bits) reg [23:0] prod_reg_i, prod_reg_q; reg strobe_mult; always @(posedge clk) begin strobe_mult <= strobe_hb2; prod_reg_i <= prod_i[33:10]; prod_reg_q <= prod_q[33:10]; end // Round final answer to 16 bits wire [31:0] ddc_chain_out; wire ddc_chain_stb; round_sd #(.WIDTH_IN(24),.WIDTH_OUT(16)) round_i (.clk(clk),.reset(rst), .in(prod_reg_i),.strobe_in(strobe_mult), .out(ddc_chain_out[31:16]), .strobe_out(ddc_chain_stb)); round_sd #(.WIDTH_IN(24),.WIDTH_OUT(16)) round_q (.clk(clk),.reset(rst), .in(prod_reg_q),.strobe_in(strobe_mult), .out(ddc_chain_out[15:0]), .strobe_out()); custom_dsp_rx #(.DSPNO(DSPNO)) custom( .clock(clk), .reset(rst), .enable(run), .set_stb_main(set_stb), .set_addr_main(set_addr), .set_data_main(set_data), .set_stb_user(set_stb_user), .set_addr_user(set_addr_user), .set_data_user(set_data_user), .frontend_i(rx_fe_i_mux), .frontend_q(rx_fe_q_mux), .ddc_in_i(to_cordic_i), .ddc_in_q(to_cordic_q), .ddc_out_sample(ddc_chain_out), .ddc_out_strobe(ddc_chain_stb), .bb_sample(sample), .bb_strobe(strobe)); assign debug = {enable_hb1, enable_hb2, run, strobe, strobe_cic, strobe_hb1, strobe_hb2}; endmodule // ddc_chain