// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////////////// // FIFO to GPMC // // Reads frames from FIFO interface and writes them into BRAM pages. // The GPMC is asynchronously alerted when a BRAM page has been filled. // // EM_CLK: // A GPMC read transaction consists of two EM_CLK cycles (idle low). // // EM_OE: // Output enable is actually the combination of ~NOE & ~NCS. // The output enable is only active for the second rising edge, // to ensure one edge per transaction to transition on. // // EM_D: // The BRAM performs a read on the first rising edge into EM_D. // Then, data will then be read on the next rising edge by GPMC. // // EM_A: // On the first rising edge of EM_CLK, the address is held. // On the second rising edge, the address is set for the next transaction. //////////////////////////////////////////////////////////////////////// module fifo_to_gpmc #(parameter PTR_WIDTH = 2, parameter ADDR_WIDTH = 10) (input clk, input reset, input clear, input arst, input [17:0] data_i, input src_rdy_i, output dst_rdy_o, output [15:0] EM_D, input [ADDR_WIDTH:1] EM_A, input EM_CLK, input EM_OE, output reg data_available); //states for the GPMC side of things wire [17:0] data_o; reg gpmc_state; reg [ADDR_WIDTH:1] addr; reg [PTR_WIDTH:0] gpmc_ptr, next_gpmc_ptr; localparam GPMC_STATE_START = 0; localparam GPMC_STATE_EMPTY = 1; //states for the FIFO side of things reg fifo_state; reg [ADDR_WIDTH-1:0] counter; reg [PTR_WIDTH:0] fifo_ptr; localparam FIFO_STATE_CLAIM = 0; localparam FIFO_STATE_FILL = 1; //------------------------------------------------------------------ // State machine to control the data from GPMC to BRAM //------------------------------------------------------------------ always @(posedge EM_CLK or posedge arst) begin if (arst) begin gpmc_state <= GPMC_STATE_START; gpmc_ptr <= 0; next_gpmc_ptr <= 0; addr <= 0; end else if (EM_OE) begin addr <= EM_A + 1; case(gpmc_state) GPMC_STATE_START: begin if (EM_A == 0) begin gpmc_state <= GPMC_STATE_EMPTY; next_gpmc_ptr <= gpmc_ptr + 1; end end GPMC_STATE_EMPTY: begin if (EM_A == 10'h3ff) begin gpmc_state <= GPMC_STATE_START; gpmc_ptr <= next_gpmc_ptr; end end endcase //gpmc_state end //EM_WE end //always //------------------------------------------------------------------ // High when the gpmc pointer has not caught up to the fifo pointer. //------------------------------------------------------------------ wire [PTR_WIDTH:0] safe_gpmc_ptr; cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_gpmc_ptr (.clk(clk), .rst(reset | clear), .in(gpmc_ptr), .out(safe_gpmc_ptr)); wire bram_available_to_fill = (fifo_ptr ^ (1 << PTR_WIDTH)) != safe_gpmc_ptr; //------------------------------------------------------------------ // Glich free generation of data available signal: // Data is available when the pointers dont match. //------------------------------------------------------------------ wire [PTR_WIDTH:0] safe_next_gpmc_ptr; cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_next_gpmc_ptr (.clk(clk), .rst(reset | clear), .in(next_gpmc_ptr), .out(safe_next_gpmc_ptr)); always @(posedge clk) if (reset | clear) data_available <= 0; else data_available <= safe_next_gpmc_ptr != fifo_ptr; //------------------------------------------------------------------ // State machine to control the data from BRAM to FIFO //------------------------------------------------------------------ always @(posedge clk) begin if (reset | clear) begin fifo_state <= FIFO_STATE_CLAIM; fifo_ptr <= 0; counter <= 0; end else begin case(fifo_state) FIFO_STATE_CLAIM: begin if (bram_available_to_fill) fifo_state <= FIFO_STATE_FILL; counter <= 0; end FIFO_STATE_FILL: begin if (src_rdy_i && dst_rdy_o && data_i[17]) begin fifo_state <= FIFO_STATE_CLAIM; fifo_ptr <= fifo_ptr + 1; end if (src_rdy_i && dst_rdy_o) begin counter <= counter + 1; end end endcase //fifo_state end end //always assign dst_rdy_o = fifo_state == FIFO_STATE_FILL; //assign data from bram output assign EM_D = data_o[15:0]; //instantiate dual ported bram for async read + write ram_2port #(.DWIDTH(18),.AWIDTH(PTR_WIDTH + ADDR_WIDTH)) async_fifo_bram (.clka(clk),.ena(1'b1),.wea(src_rdy_i && dst_rdy_o), .addra({fifo_ptr[PTR_WIDTH-1:0], counter}),.dia(data_i),.doa(), .clkb(EM_CLK),.enb(1'b1),.web(1'b0), .addrb({gpmc_ptr[PTR_WIDTH-1:0], addr}),.dib(18'h3ffff),.dob(data_o)); endmodule // fifo_to_gpmc