// Parameter LE tells us if we are little-endian. // Little-endian means send lower 16 bits first. // Default is big endian (network order), send upper bits first. module fifo72_to_fifo36 #(parameter LE=0) (input clk, input reset, input clear, input [71:0] f72_datain, input f72_src_rdy_i, output f72_dst_rdy_o, output [35:0] f36_dataout, output f36_src_rdy_o, input f36_dst_rdy_i ); wire [35:0] f36_data_int; wire f36_src_rdy_int, f36_dst_rdy_int; wire [71:0] f72_data_int; wire f72_src_rdy_int, f72_dst_rdy_int; // Shortfifo on input to guarantee no deadlock fifo_short #(.WIDTH(72)) head_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(f72_datain), .src_rdy_i(f72_src_rdy_i), .dst_rdy_o(f72_dst_rdy_o), .dataout(f72_data_int), .src_rdy_o(f72_src_rdy_int), .dst_rdy_i(f72_dst_rdy_int), .space(),.occupied() ); // Main fifo72_to_fifo36, needs shortfifos to guarantee no deadlock wire [2:0] f72_occ_int = f72_data_int[68:66]; wire f72_sof_int = f72_data_int[64]; wire f72_eof_int = f72_data_int[65]; reg phase; wire half_line = f72_eof_int & ( (f72_occ_int==1)|(f72_occ_int==2)|(f72_occ_int==3)|(f72_occ_int==4) ); assign f36_data_int[31:0] = (LE ^ phase) ? f72_data_int[31:0] : f72_data_int[63:32]; assign f36_data_int[32] = phase ? 0 : f72_sof_int; assign f36_data_int[33] = phase ? f72_eof_int : half_line; assign f36_data_int[35:34] = f36_data_int[33] ? f72_occ_int[1:0] : 2'b00; assign f36_src_rdy_int = f72_src_rdy_int; assign f72_dst_rdy_int = (phase | half_line) & f36_dst_rdy_int; wire f36_xfer = f36_src_rdy_int & f36_dst_rdy_int; wire f72_xfer = f72_src_rdy_int & f72_dst_rdy_int; always @(posedge clk) if(reset) phase <= 0; else if(f72_xfer) phase <= 0; else if(f36_xfer) phase <= 1; // Shortfifo on output to guarantee no deadlock fifo_short #(.WIDTH(36)) tail_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(f36_data_int), .src_rdy_i(f36_src_rdy_int), .dst_rdy_o(f36_dst_rdy_int), .dataout(f36_dataout), .src_rdy_o(f36_src_rdy_o), .dst_rdy_i(f36_dst_rdy_i), .space(),.occupied() ); endmodule // fifo72_to_fifo36