// Parameter LE tells us if we are little-endian. // Little-endian means send lower 16 bits first. // Default is big endian (network order), send upper bits first. module fifo36_to_fifo19 #(parameter LE=0) (input clk, input reset, input clear, input [35:0] f36_datain, input f36_src_rdy_i, output f36_dst_rdy_o, output [18:0] f19_dataout, output f19_src_rdy_o, input f19_dst_rdy_i ); wire [18:0] f19_data_int; wire f19_src_rdy_int, f19_dst_rdy_int; wire [35:0] f36_data_int; wire f36_src_rdy_int, f36_dst_rdy_int; // Shortfifo on input to guarantee no deadlock fifo_short #(.WIDTH(36)) head_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(f36_datain), .src_rdy_i(f36_src_rdy_i), .dst_rdy_o(f36_dst_rdy_o), .dataout(f36_data_int), .src_rdy_o(f36_src_rdy_int), .dst_rdy_i(f36_dst_rdy_int), .space(),.occupied() ); // Main fifo36_to_fifo19, needs shortfifos to guarantee no deadlock wire [1:0] f36_occ_int = f36_data_int[35:34]; wire f36_sof_int = f36_data_int[32]; wire f36_eof_int = f36_data_int[33]; reg phase; wire half_line = f36_eof_int & ((f36_occ_int==1)|(f36_occ_int==2)); assign f19_data_int[15:0] = (LE ^ phase) ? f36_data_int[15:0] : f36_data_int[31:16]; assign f19_data_int[16] = phase ? 0 : f36_sof_int; assign f19_data_int[17] = phase ? f36_eof_int : half_line; assign f19_data_int[18] = f19_data_int[17] & ((f36_occ_int==1)|(f36_occ_int==3)); assign f19_src_rdy_int = f36_src_rdy_int; assign f36_dst_rdy_int = (phase | half_line) & f19_dst_rdy_int; wire f19_xfer = f19_src_rdy_int & f19_dst_rdy_int; wire f36_xfer = f36_src_rdy_int & f36_dst_rdy_int; always @(posedge clk) if(reset) phase <= 0; else if(f36_xfer) phase <= 0; else if(f19_xfer) phase <= 1; // Shortfifo on output to guarantee no deadlock fifo_short #(.WIDTH(19)) tail_fifo (.clk(clk),.reset(reset),.clear(clear), .datain(f19_data_int), .src_rdy_i(f19_src_rdy_int), .dst_rdy_o(f19_dst_rdy_int), .dataout(f19_dataout), .src_rdy_o(f19_src_rdy_o), .dst_rdy_i(f19_dst_rdy_i), .space(),.occupied() ); endmodule // fifo36_to_fifo19