
User Guide [optional]

UG175 April 19, 2010 [optional]

LogiCORE™ IP
FIFO Generator v6.1

User Guide

UG175 April 19, 2010

FIFO Generator v6.1 www.xilinx.com UG175 April 19, 2010

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© 2005–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/28/05 1.1 Initial Xilinx release.

8/31/05 2.0 Updated guide for release v2.2, added SP3 to ISE v7.1i, incorporated edits from
engineering specific for this release, including FWFT, and Built-in FIFO flags, etc.

1/11/06 3.0 Updated for v2.3 release, ISE v8.1i.

7/13/06 4.0 Added Virtex-5 support, reorganized Chapter 5, added ISE v8.2i, version to 3.1

9/21/06 5.0 Core version updated to v3.2; support added for Spartan-3A.

2/15/07 6.0 Core version updated to 3.3; Xilinx tools updated to 9.1i.

4/02/07 6.5 Added support for Spartan-3A DSP devices.

8/8/07 6.6 Updated core to v4.1, ISE tools 9.2i, Cadence IUS v5.8.

10/10/07 7.0 Updated core to v4.2, IUS to v6.1, Xilinx trademark references.

3/24/08 8.0 Updated core to v4.3, ISE tools 10.1, Mentor Graphics® ModelSim® v6.3c.

9/19/08 9.0 Updated core to v4.4, ISE tools 10.1, SP3.

12/17/08 9.0.1 Early access documentation.

4/24/09 10.0 Updated core to v5.1, and ISE tools to v11.1.

6/24/09 10.5 Updated core to v5.2 and ISE tools to v11.2.

6/24/09 10.6 Updated Appendix A, “Performance Information.”

9/16/09 11.0 Updated core to v5.3 and ISE tools to v11.3.

4/19/10 12.0 Updated core to v6.1 and ISE tools to v12.1.

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 3
UG175 April 19, 2010

Preface: About This Guide
Guide Contents . 11
Additional Resources . 11
Conventions . 12

Typographical . 12
Online Document . 13

Chapter 1: Introduction
About the Core . 15
Recommended Design Experience . 15
Technical Support. 16
Feedback. 16

FIFO Generator . 16
Document . 16

Chapter 2: Core Overview
Feature Overview . 17

Clock Implementation Operation . 17
Virtex-6 and Virtex-5 FPGA Built-in FIFO Support . 17
Virtex-4 FPGA Built-in FIFO Support . 17
First-Word Fall-Through . 17
Memory Types . 18
Non-Symmetric Aspect Ratio . 18
Embedded Registers in Block RAM and FIFO Macros . 18
Error Injection and Correction . 19

Core Configuration and Implementation . 19
Common Clock: Block RAM, Distributed RAM, Shift Register 19
Common Clock: Virtex-6, VIrtex-5 or Virtex-4 FPGA Built-in FIFO 20
Independent Clocks: Block RAM and Distributed RAM . 20
Independent Clocks: Built-in FIFO for Virtex-6, Virtex-5 or Virtex-4 FPGAs. 20

FIFO Generator Features . 21
Using Block RAM FIFOs Instead of Built-in FIFOs . 22
FIFO Interfaces. 22

Interface Signals: FIFOs With Independent Clocks . 22
Interface Signals: FIFOs with Common Clock . 27

Chapter 3: Generating the Core
CORE Generator Graphical User Interface . 31
FIFO Implementation . 32

Component Name . 32
FIFO Implementation . 32

Common Clock (CLK), Block RAM . 33
Common Clock (CLK), Distributed RAM. 33

Table of Contents

http://www.xilinx.com

4 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Common Clock (CLK), Shift Register . 33
Common Clock (CLK), Built-in FIFO . 33
Independent Clocks (RD_CLK, WR_CLK), Block RAM . 33
Independent Clocks (RD_CLK, WR_CLK), Distributed RAM . 33
Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO. 33

Performance Options and Data Port Parameters. 34
Read Mode . 34

Standard FIFO. 34
First-Word Fall-Through FIFO . 34

Built-in FIFO Options . 35
Read/Write Clock Frequencies. 35

Data Port Parameters . 35
Write Width . 35
Write Depth . 35
Read Width . 35
Read Depth . 35

Implementation Options . 35
Error Correction Checking in Block RAM or Built-in FIFO . 35
Use Embedded Registers in Block RAM or FIFO . 35

Optional Flags, Handshaking, and Initialization . 36
Optional Flags. 36

Almost Full Flag . 36
Almost Empty Flag . 37

Handshaking Options . 37
Write Port Handshaking. 37
Read Port Handshaking . 37

Error Injection . 37
Single Bit Error Injection . 37
Double Bit Error Injection . 37

Initialization and Programmable Flags . 38
Initialization . 38

Reset Pin . 38
Use Dout Reset . 39

Programmable Flags . 39
Programmable Full Type . 39
Programmable Empty Type . 39

Data Count. 40
Data Count Options . 40

Use Extra Logic For More Accurate Data Counts . 40
Data Count (Synchronized With Clk) . 41
Write Data Count (Synchronized with Write Clk) . 41
Read Data Count (Synchronized with Read Clk) . 41

Summary . 41

Chapter 4: Designing with the Core
General Design Guidelines . 43

Know the Degree of Difficulty . 43
Understand Signal Pipelining and Synchronization . 43

Synchronization Considerations . 43
Initializing the FIFO Generator. 44
FIFO Implementations . 45

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 5
UG175 April 19, 2010

Independent Clocks: Block RAM and Distributed RAM . 45
Independent Clocks: Built-in FIFO . 47
Common Clock: Built-in FIFO . 48
Common Clock FIFO: Block RAM and Distributed RAM . 49
Common Clock FIFO: Shift Registers . 49

FIFO Usage and Control . 50
Write Operation . 50

ALMOST_FULL and FULL Flags . 50
Example Operation . 51

Read Operation . 51
ALMOST_EMPTY and EMPTY Flags . 51
Modes of Read Operation . 52

Handshaking Flags . 54
Write Acknowledge . 54
Valid . 54
Example Operation . 55
Underflow. 56
Overflow. 57
Example Operation . 57

Programmable Flags . 57
Programmable Full . 58
Programmable Empty. 60

Data Counts . 62
Data Count (Common Clock FIFO Only) . 63
Read Data Count (Independent Clock FIFO Only) . 63
Write Data Count (Independent Clock FIFO Only) . 63
First-Word Fall-Through Data Count . 64
Example Operation . 66

Non-symmetric Aspect Ratios . 66
Non-symmetric Aspect Ratio and First-Word Fall-Through . 69

Embedded Registers in Block RAM and FIFO Macros
(Virtex-6, Virtex-5 and Virtex-4 FPGAs) . 70

Standard FIFOs . 70
Block RAM Based FWFT FIFOs . 70
Built-in Based FWFT FIFOs (Common Clock Only) . 70

Built-in Error Correction Checking . 71
Built-in Error Injection. 72
Reset Behavior . 73

Asynchronous Reset (Enable Reset Synchronization Option is Selected) 73
Synchronous Reset . 77

Actual FIFO Depth . 81
Block RAM, Distributed RAM and Shift RAM FIFOs . 81
Virtex-6 and Virtex-5 FPGA Built-In FIFOs . 82
Virtex-4 FPGA Built-In FIFOs . 82

Latency . 82
Non-Built-in FIFOs: Common Clock and Standard Read Mode Implementations . . 83
Non-Built-in FIFOs: Common CLock and FWFT Read Mode Implementations 84
Non-Built-in FIFOs: Independent Clock and Standard Read Mode Implementations86
Non-Built-in FIFOs: Independent Clock and FWFT Read Mode Implementations . 87
Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Common Clock and Standard Read Mode

Implementations . 89
Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Common Clock and FWFT Read Mode

Implementations . 90

http://www.xilinx.com

6 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Independent Clocks and Standard Read Mode
Implementations . 91

Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Independent Clocks and FWFT Read Mode
Implementations . 92

Virtex-4 FPGA Built-in FIFO . 93

Chapter 5: Special Design Considerations
Resetting the FIFO . 95
Continuous Clocks . 95
Pessimistic Full and Empty . 95
Programmable Full and Empty . 96
Simultaneous Assertion of Full and Empty Flag . 96
Write Data Count and Read Data Count . 97
Setup and Hold Time Violations . 98

Chapter 6: Simulating Your Design
Simulation Models . 99

Appendix A: Performance Information
Resource Utilization and Performance . 101

Appendix B: Core Parameters
FIFO Parameters . 103

Appendix C: DOUT Reset Value Timing

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 7
UG175 April 19, 2010

Schedule of Figures . 7

Preface: About This Guide

Chapter 1: Introduction

Chapter 2: Core Overview
Figure 2-1: FIFO with Independent Clocks: Interface Signals . 22

Chapter 3: Generating the Core
Figure 3-1: Main FIFO Generator Screen . 32
Figure 3-2: Performance Options and Data Port Parameters Screen 34
Figure 3-3: Optional Flags, Handshaking, and Error Injection Options Screen 36
Figure 3-4: Programmable Flags and Reset Screen . 38
Figure 3-5: Data Count Screen . 40
Figure 3-6: Summary Screen. 42

Chapter 4: Designing with the Core
Figure 4-1: FIFO with Independent Clocks: Write and Read Clock Domains 44
Figure 4-2: Functional Implementation of a FIFO with Independent Clock Domains . 46
Figure 4-3: Functional Implementation of Built-in FIFO . 48
Figure 4-4: Functional Implementation of a Common Clock FIFO using

Block RAM or Distributed RAM . 49
Figure 4-5: Functional Implementation of a Common Clock FIFO using Shift Registers 50
Figure 4-6: Write Operation for a FIFO with Independent Clocks. 51
Figure 4-7: Standard Read Operation for a FIFO with Independent Clocks 53
Figure 4-8: FWFT Read Operation for a FIFO with Independent Clocks 53
Figure 4-9: Write and Read Operation for a FIFO with Common Clocks 54
Figure 4-10: Handshaking Signals for a FIFO with Independent Clocks 56
Figure 4-11: Handshaking Signals for a FIFO with Common Clocks 57
Figure 4-12: Programmable Full Single Threshold: Threshold Set to 7. 59
Figure 4-13: Programmable Full with Assert and Negate Thresholds: Assert Set to 10

and Negate Set to 7 . 60
Figure 4-14: Programmable Empty with Single Threshold: Threshold Set to 4 61
Figure 4-15: Programmable Empty with Assert and Negate Thresholds:

Assert Set to 7 and Negate Set to 10 . 62
Figure 4-16: Write and Read Data Counts for FIFO with Independent Clocks 66
Figure 4-17: 1:4 Aspect Ratio: Data Ordering . 67
Figure 4-18: 1:4 Aspect Ratio: Status Flag Behavior . 68

Schedule of Figures

http://www.xilinx.com

8 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Figure 4-19: 4:1 Aspect Ratio: Data Ordering . 68
Figure 4-20: 4:1 Aspect Ratio: Status Flag Behavior . 69
Figure 4-21: Standard Read Operation for a Block RAM or built-in FIFO

with Use Embedded Registers Enabled . 70
Figure 4-22: FWFT Read Operation for a Synchronous Built-in

FIFO with User Embedded Registers Enabled . 71
Figure 4-23: DOUT Reset Value for Virtex-6 Common Clock Built-in FIFO Embedded Register

71
Figure 4-24: SBITERR and DBITERR Outputs in the FIFO Generator Core 72
Figure 4-25: Error Injection and Correction in Virtex-6 FPGA . 73
Figure 4-26: Block RAM, Distributed RAM, Shift RAM with Full

Flags Reset Value of 1 for the Reset Pulse of One Clock. 75
Figure 4-27: Block RAM, Distributed RAM, Shift RAM with Full

Flags Reset Value of 1 for the Reset Pulse of More Than One Clock 75
Figure 4-28: Block RAM, Distributed RAM, Shift RAM with Full

Flags Reset Value of 0 . 76
Figure 4-29: Built-in FIFO, Asynchronous Reset Behavior . 77
Figure 4-32: Synchronous Reset: FIFO with a Common Clock . 78
Figure 4-33: Synchronous Reset: FIFO with Independent Clock -

WR_RST then RD_RST . 79
Figure 4-34: Synchronous Reset: FIFO with Independent Clock -

RD_RST then WR_RST . 80
Figure 4-35: Latency 0 Timing . 83

Chapter 5: Special Design Considerations

Chapter 6: Simulating Your Design

Appendix A: Performance Information

Appendix B: Core Parameters

Appendix C: DOUT Reset Value Timing
Figure C-1: DOUT Reset Value for Synchronous Reset (SRST) and for Asynchronous Reset (RST)

for Common Clock Block RAM Based FIFO . 107
Figure C-2: DOUT Reset Value for Asynchronous Reset (RST) for Common Clock

Distributed/Shift RAM Based FIFO . 107
Figure C-3: DOUT Reset Value for Common Clock Built-in FIFO 107
Figure C-4: DOUT Reset Value for Independent Clock Block RAM Based FIFO 108
Figure C-5: DOUT Reset Value for Independent Clock Distributed RAM Based FIFO 108

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 9
UG175 April 19, 2010

Schedule of Tables . 9

Preface: About This Guide

Chapter 1: Introduction

Chapter 2: Core Overview
Table 2-1: Memory Configuration Benefits . 18
Table 2-2: FIFO Configurations . 19
Table 2-3: FIFO Configurations Summary. 21
Table 2-4: Reset Signal for FIFOs with Independent Clocks . 23
Table 2-5: Write Interface Signals for FIFOs with Independent Clocks 23
Table 2-6: Read Interface Signals for FIFOs with Independent Clocks. 25
Table 2-7: Interface Signals for FIFOs with a Common Clock . 27

Chapter 3: Generating the Core

Chapter 4: Designing with the Core
Table 4-1: Interface Signals and Corresponding Clock Domains . 47
Table 4-2: Interface Signals and Corresponding Clock Domains . 48
Table 4-3: Implementation-Specific Support for First-Word Fall-Through 52
Table 4-4: Implementation-specific Support for Data Counts. 63
Table 4-5: Empty FIFO WR_DATA_COUNT/DATA_COUNT Value 65
Table 4-6: Implementation-specific Support for Non-symmetric Aspect Ratios 66
Table 4-7: FIFO Asynchronous Reset Values for Block RAM, Distributed RAM,

and Shift RAM FIFOs . 74
Table 4-8: Asynchronous FIFO Reset Values for Built-in FIFO . 77
Table 4-9: Synchronous FIFO Reset and Power-up Values . 80
Table 4-10: Write Port Flags Update Latency Due to Write Operation 83
Table 4-11: Read Port Flags Update Latency Due to Read Operation 83
Table 4-12: Write Port Flags Update Latency Due to Read Operation 83
Table 4-13: Read Port Flags Update Latency Due to Write Operation 84
Table 4-14: Write Port Flags Update Latency due to Write Operation 84
Table 4-15: Read Port Flags Update Latency due to Read Operation 84
Table 4-16: Write Port Flags Update Latency Due to Read Operation 85
Table 4-17: Read Port Flags Update Latency Due to Write Operation 86
Table 4-18: Write Port Flags Update Latency Due to a Write Operation 86
Table 4-19: Read Port Flags Update Latency Due to a Read Operation 86

Schedule of Tables

http://www.xilinx.com

10 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Table 4-20: Write Port Flags Update Latency Due to a Read Operation 86
Table 4-21: Read Port Flags Update Latency Due to a Write Operation 87
Table 4-22: Write Port Flags Update Latency Due to a Write Operation 87
Table 4-23: Read Port Flags Update Latency Due to a Read Operation 88
Table 4-24: Write Port Flags Update Latency Due to a Read Operation 88
Table 4-25: Read Port Flags Update Latency Due to a Write Operation 88
Table 4-26: Write Port Flags Update Latency Due to Write Operation. 89
Table 4-27: Read Port Flags Update Latency Due to Read Operation 89
Table 4-28: Write Port Flags Update Latency Due to Read Operation 89
Table 4-29: Read Port Flags Update Latency Due to Write Operation 90
Table 4-30: Write Port Flags Update Latency Due to Write Operation. 90
Table 4-31: Read Port Flags Update Latency Due to a Read Operation 90
Table 4-32: Write Port Flags Update Latency Due to a Read Operation 90
Table 4-33: Read Port Flags Update Latency Due to a Write Operation 91
Table 4-34: Write Port Flags Update Latency Due to a Write Operation 91
Table 4-35: Read Port Flags Update Latency Due to a Read Operation 92
Table 4-36: Write Port Flags Update Latency Due to a Read Operation 92
Table 4-37: Read Port Flags Update Latency Due to a Write Operation 92
Table 4-38: Write Port Flags Update Latency Due to a Write Operations 92
Table 4-39: Read Port Flags Update Latency Due to a Read Operation 93
Table 4-40: Write Port Flags Update Latency Due to a Read Operation 93
Table 4-41: Read Port Flags Update Latency Due to a Write Operation 93

Chapter 5: Special Design Considerations

Chapter 6: Simulating Your Design

Appendix A: Performance Information

Appendix B: Core Parameters
Table B-1: FIFO Parameter Table . 103

Appendix C: DOUT Reset Value Timing

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 11
UG175 April 19, 2010

Preface

About This Guide

The LogicCORE™ IP FIFO Generator User Guide describes the function and operation of the
FIFO Generator, as well as information about designing, customizing, and implementing
the core.

Guide Contents
The following chapters are included:

• “Preface, About this Guide” describes how the user guide is organized and the
conventions used in this guide.

• Chapter 1, “Introduction,” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Core Overview,” describes the core configuration options and their
interfaces.

• Chapter 3, “Generating the Core,” describes how to generate the core using the Xilinx
CORE Generator Graphical User Interface (GUI).

• Chapter 4, “Designing with the Core,” discusses how to use the core in a user
application.

• Chapter 5, “Special Design Considerations,” discusses specific design features that
must be considered when designing with the core.

• Chapter 6, “Simulating Your Design,” provides instructions for simulating the design
with either behavioral or structural simulation models.

• Appendix A, “Performance Information,” provides a summary of the core’s
performance data.

• Appendix B, “Core Parameters,” provides a comprehensive list of the parameters set
by the CORE Generator GUI for the FIFO Generator.

• Appendix C, “DOUT Reset Value Timing,” provides the timing diagram for DOUT
reset value for various FIFO configurations.

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support/mysupport.htm.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/mysupport.htm

12 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Preface: About This Guide

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals See the User Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Dark Shading
Items that are not supported or
reserved

This feature is not supported

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices

lowpwr ={on|off}

Angle brackets < > User-defined variable or in code
samples

<directory name>

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 13
UG175 April 19, 2010

Conventions

Online Document
The following conventions are used in this document:

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active low usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

14 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Preface: About This Guide

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 15
UG175 April 19, 2010

Chapter 1

Introduction

The FIFO Generator core is a fully verified first-in first-out memory queue for use in any
application requiring in-order storage and retrieval, enabling high-performance and area-
optimized designs. This core can be customized using the Xilinx CORE Generator™
system as a complete solution with control logic already implemented, including
management of the read and write pointers and the generation of status flags.

This chapter introduces the FIFO Generator and provides related information, including
recommended design experience, additional resources, technical support, and submitting
feedback to Xilinx.

About the Core
The FIFO Generator is a Xilinx CORE Generator IP core, included in the latest IP Update on
the Xilinx IP Center. The core is free of charge and no license is required. For detailed
information about the core, see the FIFO Generator product page.

Windows

• Windows XP® Professional 32-bit/64-bit

• Windows Vista® Business 32-bit/64-bit

Linux

• Red Hat® Enterprise WS 4.0 32-bit/64-bit

• Red Hat Enterprise Desktop 5.0 32-bit/64-bit (with Workstation option)

• SUSE Linux Enterprise (SLE) v10.1 32-bit/64-bit

Software

• ISE® v11.3

Recommended Design Experience
The FIFO Generator is a fully verified solution, and can be used by all levels of design
engineers.

Important: When implementing a FIFO with independent write and read clocks, special
care must be taken to ensure the FIFO Generator is correctly used. “Synchronization
Considerations,” page 43 provides important information to help ensure correct design
configuration.

Similarly, asynchronous designs should also be aware that the behavioral models do not
model synchronization delays. See Chapter 6, “Simulating Your Design” for details.

http://www.xilinx.com/products/ipcenter/FIFO_Generator.htm
http://www.xilinx.com

16 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 1: Introduction

Technical Support
For technical support, visit www.support.xilinx.com/. Questions are routed to a team of
engineers with FIFO Generator expertise.

Xilinx will provide technical support for use of this product as described in the LogiCORE
FIFO Generator User Guide. Xilinx cannot guarantee timing, functionality, or support of this
product for designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the FIFO Generator and the
documentation supplied with the core.

FIFO Generator
For comments or suggestions about the FIFO Generator, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
http://support.xilinx.com/
http://support.xilinx.com/

FIFO Generator v6.1 www.xilinx.com 17
UG175 April 19, 2010

Chapter 2

Core Overview

This chapter provides an overview of the FIFO Generator configuration options and
interfaces.

Feature Overview

Clock Implementation Operation
The FIFO Generator enables FIFOs to be configured with either independent or common
clock domains for write and read operations. The independent clock configuration of the
FIFO Generator enables the user to implement unique clock domains on the write and read
ports. The FIFO Generator handles the synchronization between clock domains, placing no
requirements on phase and frequency relationships between clocks. A common clock
domain implementation optimizes the core for data buffering within a single clock
domain.

Virtex-6 and Virtex-5 FPGA Built-in FIFO Support
The FIFO Generator supports the Virtex®-6 and Virtex-5 FPGA built-in FIFO modules,
enabling the creation of large FIFOs by cascading the built-in FIFOs in both width and
depth. The core expands the capabilities of the built-in FIFOs by utilizing the FPGA fabric
to create optional status flags not implemented in the built-in FIFO macro. The built-in
Error Injection and Correction Checking (ECC) feature in the built-in FIFO macro is also
available.

Virtex-4 FPGA Built-in FIFO Support
The FIFO Generator supports a single instantiation of the Virtex-4 FPGA built-in FIFO
module. The core also implements a FIFO flag patch (“Solution 1:
Synchronous/Asynchronous Clock Work-Arounds,” defined in the Virtex-4 FPGA User
Guide), based on estimated clock frequencies. This patch is implemented in fabric. See
Appendix A, “Performance Information” for resource utilization estimates.

First-Word Fall-Through
The first-word fall-through (FWFT) feature provides the ability to look ahead to the next
word available from the FIFO without having to issue a read operation. The FIFO
accomplishes this by using output registers which are automatically loaded with data,
when data appears in the FIFO. This causes the first word written to the FIFO to
automatically appear on the data out bus (DOUT). Subsequent user read operations cause
the output data to update with the next word, as long as data is available in the FIFO. The

http://www.xilinx.com

18 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 2: Core Overview

use of registers on the FIFO DOUT bus improves clock-to-output timing, and the FWFT
functionality provides low-latency access to data. This is ideal for applications that require
throttling, based on the contents of the data that are read.

See Table 2-2 for FWFT availability. The use of this feature impacts the behavior of many
other features, such as:

• Read operations (see “First-Word-Fall-Through FIFO Read Operation,” page 53)

• Programmable empty (see “Non-symmetric Aspect Ratio and First-Word Fall-
Through,” page 69)

• Data counts (see “First-Word Fall-Through Data Count,” page 64 and “Non-symmetric
Aspect Ratio and First-Word Fall-Through,” page 69)

Memory Types
The FIFO Generator implements FIFOs built from block RAM, distributed RAM, shift
registers, or the built-in FIFOs for Virtex-6, Virtex-5 and Virtex-4 FPGAs. The core
combines memory primitives in an optimal configuration based on the selected width and
depth of the FIFO. Table 2-1 provides best-use recommendations for specific design
requirements.

Non-Symmetric Aspect Ratio
The core supports generating FIFOs whose write and read ports have different widths,
enabling automatic width conversion of the data width. Non-symmetric aspect ratios
ranging from 1:8 to 8:1 are supported for the write and read port widths. This feature is
available for FIFOs implemented with block RAM that are configured to have independent
write and read clocks.

Embedded Registers in Block RAM and FIFO Macros
In Virtex-6 and Virtex-5 FPGA block RAM and FIFO macros and Virtex-4 FPGA block
RAM macros, embedded output registers are available to increase performance and add a
pipeline register to the macros. This feature can be leveraged to add one additional latency
to the FIFO core (DOUT bus and VALID outputs) or implement the output registers for
FWFT FIFOs. The embedded registers available in Virtex-6 FPGAs can be reset (DOUT) to
a default or user programmed value for common clock built-in FIFOs. See “Embedded
Registers in Block RAM and FIFO Macros (Virtex-6, Virtex-5 and Virtex-4 FPGAs),”
page 70 for more information.

Table 2-1: Memory Configuration Benefits

Independent
Clocks

Common
Clock

Small
Buffering

Medium-
Large

Buffering

High
Performance

Minimal
Resources

Built-in
FIFO

Block RAM

Shift
Register

Distributed
RAM

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 19
UG175 April 19, 2010

Core Configuration and Implementation

Error Injection and Correction
The block RAM and FIFO macros are equipped with built-in Error Correction Checking
(ECC) in the Virtex-5 FPGA architecture and built-in Error Injection and Correction
Checking in the Virtex-6 FPGA architecture. Error Injection and Correction are available
for both the common and independent clock block RAM or built-in based FIFOs.

Core Configuration and Implementation
Table 2-2 provides a summary of the supported memory and clock configurations.

Common Clock: Block RAM, Distributed RAM, Shift Register
This implementation category allows the user to select block RAM, distributed RAM, or
shift register and supports a common clock for write and read data accesses.

The feature set supported for this configuration includes status flags (full, almost full,
empty, and almost empty) and programmable empty and full flags generated with user-
defined thresholds. In addition, optional handshaking and error flags are supported (write
acknowledge, overflow, valid, and underflow), and an optional data count provides the
number of words in the FIFO. In addition, for the block RAM and distributed RAM
implementations, the user has the option to select a synchronous or asynchronous reset for
the core. For Virtex-6 and Virtex-5 FPGA designs, the block RAM FIFO configuration also
supports ECC.

Table 2-2: FIFO Configurations

Clock Domain Memory Type

Non-
symmetric

Aspect
Ratios

First-Word
Fall-

Through

ECC
Support

Embedded
Register
Support

Error
Injection

Reset Option for
Embedded Register
(with/without DOUT

Reset Value)a

Common Block RAM b

Common Distributed
RAM

Common Shift Register

Common Built-in FIFOc d e

Independent Block RAM b

Independent Distributed
RAM

Independent Built-in FIFOc d f

a. Available only if Embedded register option is selected.
b. Embedded register support is only available for Virtex-4, Virtex-5 and Virtex-6 FPGA block RAM-based FIFOs.
c. The built-in FIFO primitive is only available in the Virtex-6, Virtex-5 and Virtex-4 architectures.
d. FWFT is only supported for built-in FIFOs in Virtex-6 and Virtex-5 devices.
e. Only available for Virtex-6 and Virtex-5 FPGA common clock built-in FIFOs.
f. Available only if ECC option is selected.

http://www.xilinx.com

20 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 2: Core Overview

Common Clock: Virtex-6, VIrtex-5 or Virtex-4 FPGA Built-in FIFO
This implementation category allows the user to select the built-in FIFO available in the
Virtex-6, Virtex-5 or Virtex-4 FPGA architectures and supports a common clock for write
and read data accesses.

The feature set supported for this configuration includes status flags (full and empty) and
optional programmable full and empty flags with user-defined thresholds. In addition,
optional handshaking and error flags are available (write acknowledge, overflow, valid,
and underflow). The Virtex-6 and Virtex-5 FPGA built-in FIFO configurations also support
the built-in ECC feature.

Independent Clocks: Block RAM and Distributed RAM
This implementation category allows the user to select block RAM or distributed RAM and
supports independent clock domains for write and read data accesses. Operations in the
read domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this type of FIFO includes non-symmetric aspect ratios
(different write and read port widths), status flags (full, almost full, empty, and almost
empty), as well as programmable full and empty flags generated with user-defined
thresholds. Optional read data count and write data count indicators provide the number
of words in the FIFO relative to their respective clock domains. In addition, optional
handshaking and error flags are available (write acknowledge, overflow, valid, and
underflow). For Virtex-6 and Virtex-5 FPGA designs, the block RAM FIFO configuration
also supports ECC.

Independent Clocks: Built-in FIFO for Virtex-6, Virtex-5 or Virtex-4 FPGAs
This implementation category allows the user to select the built-in FIFO available in the
Virtex-6, Virtex-5 or Virtex-4 FPGA architectures. Operations in the read domain are
synchronous to the read clock and operations in the write domain are synchronous to the
write clock.

The feature set supported for this configuration includes status flags (full and empty) and
programmable full and empty flags generated with user-defined thresholds. In addition,
optional handshaking and error flags are available (write acknowledge, overflow, valid,
and underflow). The Virtex-6 and Virtex-5 FPGA built-in FIFO configurations also support
the built-in ECC feature.

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 21
UG175 April 19, 2010

FIFO Generator Features

FIFO Generator Features
Table 2-3 summarizes the FIFO Generator features supported for each clock configuration
and memory type.

Table 2-3: FIFO Configurations Summary

FIFO Feature

Independent Clocks Common Clock

Block RAM
Distributed

RAM
 Built-in
FIFOa

a. For Virtex-4 FPGA Built-in FIFO macro, the valid width range is 4, 9, 18 and 36 and the valid
depth range automatically varies based on write width selection. For Virtex-6 and Virtex-5 FPGA
Built-in FIFO macros, the valid width range is 1 to 1024 and the valid depth range is 512 to
4194304. Only depths with powers of 2 are allowed.

Block RAM
DistributedR

AM, Shift
Register

 Built-in
FIFOa

Non-symmetric
Aspect Ratiosb

b. For applications with a single clock that require non-symmetric ports, use the independent clock
configuration and connect the write and read clocks to the same source. A dedicated solution for
common clocks will be available in a future release. Contact your Xilinx representative for more details.

Symmetric Aspect
Ratios

Almost Full

Almost Empty

Handshaking

Data Count

Programmable
Empty/Full
Thresholds

c

c. For built-in FIFOs, the range of Programmable Empty/Full threshold is limited to take advantage of
the logic internal to the macro.

c

First-Word Fall-
Through

d

d. First-Word-Fall-Through is only supported for the Virtex-6 and Virtex-5 FPGA built-in FIFOs.

e

e. First-Word-Fall-Through is supported for distributed RAM FIFO only.

d

Synchronous
Reset

Asynchronous
Reset

f

f. Asynchronous reset is optional for all FIFOs built using distributed and block RAM.

f f f

DOUT Reset
Value

 g

g. DOUT reset value is supported only in Virtex-6 FPGA common clock built-in FIFOs with embedded
register option selected.

ECC i h

h. ECC is only supported for the Virtex-6 and Virtex-5 FPGA block RAM and built-in FIFOs.

i i

Embedded
Register

i

i. Embedded register option is only supported in Virtex-6, VIrtex-5 and Virtex-4 FPGA block RAM FIFOs.

 j j

j. Embedded register option is supported only in Virtex-6 and VIrtex-5 FPGA common clock built-in
FIFOs. See “Embedded Registers in Block RAM and FIFO Macros,” page 18.

http://www.xilinx.com

22 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 2: Core Overview

Using Block RAM FIFOs Instead of Built-in FIFOs
The Built-In FIFO solutions were implemented to take advantage of logic internal to the
Built-in FIFO macro. Several features, for example, non-symmetric aspect ratios, almost
full, almost empty, and so forth were not implemented because they are not native to the
macro and require additional logic in the fabric to implement.

Benchmarking suggests that the advantages the Built-In FIFO implementations have over
the block RAM FIFOs (for example, logic resources) diminish as external logic is added to
implement features not native to the macro. This is especially true as the depth of the
implemented FIFO increases. It is strongly recommended that users requiring features not
available in the Built-In FIFOs implement their design using block RAM FIFOs.

FIFO Interfaces
The following two sections provide definitions for the FIFO interface signals. Figure 2-1
illustrates these signals (both the standard and optional ports) for a FIFO core that
supports independent write and read clocks.

Interface Signals: FIFOs With Independent Clocks
The RST signal, as defined in Table 2-4, causes a reset of the entire core logic (both write
and read clock domains). It is an asynchronous input which is synchronized internally in
the core before being used. The initial hardware reset should be generated by the user.
When the core is configured to have independent clocks, the reset signal should be High

X-Ref Target - Figure 2-1

Figure 2-1: FIFO with Independent Clocks: Interface Signals

Note: Optional ports represented in italics

DOUT[M:0]

EMPTY

RST

RD_EN

RD_CLK

PROG_FULL_THRESH_ASSERT

PROG_FULL_THRESH_NEGATE

WR_RST

PROG_FULL_THRESH

Write Clock
Domain

Read Clock
Domain

FULL

WR_EN

DIN[N:0]

WR_CLK

ALMOST_FULL

PROG_FULL

WR_ACK

OVERFLOW

ALMOST_EMPTY

PROG_EMPTY

VALID

UNDERFLOW

PROG_EMPTY_THRESH_ASSERT

PROG_EMPTY_THRESH_NEGATE

RD_RST

PROG_EMPTY_THRESH

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 23
UG175 April 19, 2010

FIFO Interfaces

for at least three read clock and write clock cycles to ensure all internal states are reset to
the correct values.

Table 2-5 defines the signals for the write interface for FIFOs with independent clocks. The
write interface signals are divided into required and optional signals and all signals are
synchronous to the write clock (WR_CLK).

Table 2-4: Reset Signal for FIFOs with Independent Clocks

Name Direction Description

RST Input Reset: An asynchronous reset signal that
initializes all internal pointers, output
registers and memorya.

a. Output of FIFO (DOUT) is reset and not the content of the memory.

Table 2-5: Write Interface Signals for FIFOs with Independent Clocks

Name Direction Description

Required

WR_CLK Input Write Clock: All signals on the write domain
are synchronous to this clock.

DIN[N:0] Input Data Input: The input data bus used when
writing the FIFO.

WR_EN Input Write Enable: If the FIFO is not full, asserting
this signal causes data (on DIN) to be written to
the FIFO.

FULL Output Full Flag: When asserted, this signal indicates
that the FIFO is full. Write requests are ignored
when the FIFO is full, initiating a write when
the FIFO is full is non-destructive to the
contents of the FIFO.

Optional

WR_RST Input Write Reset: Synchronous to write clock. When
asserted, initializes all internal pointers and
flags of write clock domain.

ALMOST_FULL Output Almost Full: When asserted, this signal
indicates that only one more write can be
performed before the FIFO is full.

PROG_FULL Output Programmable Full: This signal is asserted
when the number of words in the FIFO is
greater than or equal to the assert threshold. It
is deasserted when the number of words in the
FIFO is less than the negate threshold.

http://www.xilinx.com

24 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 2: Core Overview

WR_DATA_COUNT [D:0] Output Write Data Count: This bus indicates the
number of words written into in the FIFO. The
count is guaranteed to never under-report the
number of words in the FIFO, to ensure the
user never overflows the FIFO. The exception
to this behavior is when a write operation
occurs at the rising edge of WR_CLK, that
write operation will only be reflected on
WR_DATA_COUNT at the next rising clock
edge.

If D is less than log2(FIFO depth)-1, the bus is
truncated by removing the least-significant
bits.

WR_ACK Output Write Acknowledge: This signal indicates that
a write request (WR_EN) during the prior clock
cycle succeeded.

OVERFLOW Output Overflow: This signal indicates that a write
request (WR_EN) during the prior clock cycle
was rejected, because the FIFO is full.
Overflowing the FIFO is non-destructive to the
contents of the FIFO.

PROG_FULL_THRESH Input Programmable Full Threshold: This signal is
used to input the threshold value for the
assertion and deassertion of the programmable
full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and
negate threshold to the same value (using
PROG_FULL_THRESH), or the user can
control these values independently (using
PROG_FULL_THRESH_ASSERT and
PROG_FULL_THRESH_NEGATE).

PROG_FULL_THRESH_
ASSERT

Input Programmable Full Threshold Assert: This
signal is used to set the upper threshold value
for the programmable full flag, which defines
when the signal is asserted. The threshold can
be dynamically set in-circuit during reset.

PROG_FULL_THRESH_
NEGATE

Input Programmable Full Threshold Negate: This
signal is used to set the lower threshold value
for the programmable full flag, which defines
when the signal is deasserted. The threshold
can be dynamically set in-circuit during reset.

Table 2-5: Write Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 25
UG175 April 19, 2010

FIFO Interfaces

Table 2-6 defines the signals on the read interface of a FIFO with independent clocks. The
read interface signals are divided into required signals and optional signals, and all signals
are synchronous to the read clock (RD_CLK).

INJECTSBITERR Input

Injects a single bit error if the ECC feature is
used on a Virtex-6 FPGA block RAM or built-in
FIFO macro. For detailed information, see
"Chapter 4, Designing with the Core," in the
FIFO Generator User Guide.

INJECTDBITERR Input

Injects a double bit error the ECC feature is
used on a Virtex-6 FPGA block RAM or built-in
FIFO macro. For detailed information, see
"Chapter 4, Designing with the Core," in the
FIFO Generator User Guide.

Table 2-6: Read Interface Signals for FIFOs with Independent Clocks

Name Direction Description

Required

RD_CLK Input Read Clock: All signals on the read domain are
synchronous to this clock.

DOUT[M:0] Output Data Output: The output data bus is driven when
reading the FIFO.

RD_EN Input Read Enable: If the FIFO is not empty, asserting
this signal causes data to be read from the FIFO
(output on DOUT).

EMPTY Output Empty Flag: When asserted, this signal indicates
that the FIFO is empty. Read requests are ignored
when the FIFO is empty, initiating a read while
empty is non-destructive to the FIFO.

Optional

RD_RST Input Read Reset: Synchronous to read clock. When
asserted, initializes all internal pointers, flags and
output registers of read clock domain.

ALMOST_EMPTY Output Almost Empty Flag: When asserted, this signal
indicates that the FIFO is almost empty and one
word remains in the FIFO.

PROG_EMPTY Output Programmable Empty: This signal is asserted
when the number of words in the FIFO is less than
or equal to the programmable threshold. It is
deasserted when the number of words in the FIFO
exceeds the programmable threshold.

Table 2-5: Write Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description

http://www.xilinx.com

26 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 2: Core Overview

RD_DATA_COUNT [C:0] Output Read Data Count: This bus indicates the number
of words available for reading in the FIFO. The
count is guaranteed to never over-report the
number of words available for reading, to ensure
that the user does not underflow the FIFO. The
exception to this behavior is when the read
operation occurs at the rising edge of RD_CLK,
that read operation will only be reflected on
RD_DATA_COUNT at the next rising clock edge.

If C is less than log2(FIFO depth)-1, the bus is
truncated by removing the least-significant bits.

VALID Output Valid: This signal indicates that valid data is
available on the output bus (DOUT).

UNDERFLOW Output Underflow: Indicates that the read request
(RD_EN) during the previous clock cycle was
rejected because the FIFO is empty. Underflowing
the FIFO is not destructive to the FIFO.

PROG_EMPTY_THRESH Input Programmable Empty Threshold: This signal is
used to input the threshold value for the assertion
and deassertion of the programmable empty
(PROG_EMPTY) flag. The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and
negate threshold to the same value (using
PROG_EMPTY_THRESH), or the user can control
these values independently (using
PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

PROG_EMPTY_THRESH_
ASSERT

Input Programmable Empty Threshold Assert: This
signal is used to set the lower threshold value for
the programmable empty flag, which defines
when the signal is asserted. The threshold can be
dynamically set in-circuit during reset.

PROG_EMPTY_THRESH_
NEGATE

Input Programmable Empty Threshold Negate: This
signal is used to set the upper threshold value for
the programmable empty flag, which defines
when the signal is deasserted. The threshold can
be dynamically set in-circuit during reset.

SBITERR Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error on a Virtex-6 and
Virtex-5 FPGA block RAMs or built-in FIFO macros.
See “Built-in Error Correction Checking,” page 71.

DBITERR Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error on a Virtex-6 and
Virtex-5 FPGA block RAMs or built-in FIFO
macros and data in the FIFO core is corrupted. See
“Built-in Error Correction Checking,” page 71.

Table 2-6: Read Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 27
UG175 April 19, 2010

FIFO Interfaces

Interface Signals: FIFOs with Common Clock
Table 2-7 defines the interface signals of a FIFO with a common write and read clock. The
table is divided into standard and optional interface signals, and all signals (except reset)
are synchronous to the common clock (CLK). Users have the option to select synchronous
or asynchronous reset for the distributed or block RAM FIFO implementation.

Table 2-7: Interface Signals for FIFOs with a Common Clock

Name Direction Description

Required

RST Input Reset: An asynchronous reset that initializes all
internal pointers and output registers.

SRST Input Synchronous Reset: A synchronous reset that
initializes all internal pointers and output
registers.

CLK Input Clock: All signals on the write and read domains
are synchronous to this clock.

DIN[N:0] Input Data Input: The input data bus used when
writing the FIFO.

WR_EN Input Write Enable: If the FIFO is not full, asserting
this signal causes data (on DIN) to be written to
the FIFO.

FULL Output Full Flag: When asserted, this signal indicates
that the FIFO is full. Write requests are ignored
when the FIFO is full, initiating a write when the
FIFO is full is non-destructive to the contents of
the FIFO.

DOUT[M:0] Output Data Output: The output data bus driven when
reading the FIFO.

RD_EN Input Read Enable: If the FIFO is not empty, asserting
this signal causes data to be read from the FIFO
(output on DOUT).

EMPTY Output Empty Flag: When asserted, this signal indicates
that the FIFO is empty. Read requests are
ignored when the FIFO is empty, initiating a
read while empty is non-destructive to the FIFO.

Optional

DATA_COUNT [C:0] Output Data Count: This bus indicates the number of
words stored in the FIFO. If C is less than
log2(FIFO depth)-1, the bus is truncated by
removing the least-significant bits.

ALMOST_FULL Output Almost Full: When asserted, this signal indicates
that only one more write can be performed
before the FIFO is full.

http://www.xilinx.com

28 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 2: Core Overview

PROG_FULL Output Programmable Full: This signal is asserted when
the number of words in the FIFO is greater than
or equal to the assert threshold. It is deasserted
when the number of words in the FIFO is less
than the negate threshold.

WR_ACK Output Write Acknowledge: This signal indicates that a
write request (WR_EN) during the prior clock
cycle succeeded.

OVERFLOW Output Overflow: This signal indicates that a write
request (WR_EN) during the prior clock cycle
was rejected, because the FIFO is full.
Overflowing the FIFO is non-destructive to the
contents of the FIFO.

PROG_FULL_THRESH Input Programmable Full Threshold: This signal is
used to set the threshold value for the assertion
and deassertion of the programmable full flag
(PROG_FULL). The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and
negate threshold to the same value (using
PROG_FULL_THRESH), or the user can control
these values independently (using
PROG_FULL_THRESH_ASSERT and
PROG_FULL_THRESH_NEGATE).

PROG_FULL_THRESH_
ASSERT

Input Programmable Full Threshold Assert: This
signal is used to set the upper threshold value
for the programmable full flag, which defines
when the signal is asserted. The threshold can be
dynamically set in-circuit during reset.

PROG_FULL_THRESH_
NEGATE

Input Programmable Full Threshold Negate: This
signal is used to set the lower threshold value for
the programmable full flag, which defines when
the signal is deasserted. The threshold can be
dynamically set in-circuit during reset.

ALMOST_EMPTY Output Almost Empty Flag: When asserted, this signal
indicates that the FIFO is almost empty and one
word remains in the FIFO.

PROG_EMPTY Output Programmable Empty: This signal is asserted
after the number of words in the FIFO is less
than or equal to the programmable threshold. It
is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

VALID Output Valid: This signal indicates that valid data is
available on the output bus (DOUT).

Table 2-7: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name Direction Description

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 29
UG175 April 19, 2010

FIFO Interfaces

UNDERFLOW Output Underflow: Indicates that read request (RD_EN)
during the previous clock cycle was rejected
because the FIFO is empty. Underflowing the
FIFO is not destructive to the FIFO.

PROG_EMPTY_THRESH Input Programmable Empty Threshold: This signal is
used to set the threshold value for the assertion
and deassertion of the programmable empty
flag (PROG_EMPTY). The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and
negate threshold to the same value (using
PROG_EMPTY_THRESH), or the user can
control these values independently (using
PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

PROG_EMPTY_THRESH_
ASSERT

Input Programmable Empty Threshold Assert: This
signal is used to set the lower threshold value for
the programmable empty flag, which defines
when the signal is asserted. The threshold can be
dynamically set in-circuit during reset.

PROG_EMPTY_THRESH_
NEGATE

Input Programmable Empty Threshold Negate: This
signal is used to set the upper threshold value
for the programmable empty flag, which defines
when the signal is deasserted. The threshold can
be dynamically set in-circuit during reset.

SBITERR Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error on a Virtex-
6 and Virtex-5 FPGA built-in FIFO macros. See
“Built-in Error Correction Checking,” page 71.

DBITERR Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error on a
Virtex-6 and Virtex-5 FPGA built-in FIFO
macros, and data in the FIFO core is corrupted.
See “Built-in Error Correction Checking,”
page 71.

INJECTSBITERR Input

Injects a single bit error if the ECC feature is
used on a Virtex-6 FPGA block RAM or built-in
FIFO macro. For detailed information, see
"Chapter 4, Designing with the Core," in the
FIFO Generator User Guide.

INJECTDBITERR Input

Injects a double bit error if the ECC feature is
used on a Virtex-6 FPGA block RAM or built-in
FIFO macro. For detailed information, see
"Chapter 4, Designing with the Core," in the
FIFO Generator User Guide.

Table 2-7: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name Direction Description

http://www.xilinx.com

30 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 2: Core Overview

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 31
UG175 April 19, 2010

Chapter 3

Generating the Core

This chapter contains information and instructions for using the Xilinx CORE Generator
system to customize the FIFO Generator.

CORE Generator Graphical User Interface
The FIFO Generator GUI includes six configuration screens.

• FIFO Implementation

• Performance Options and Data Port Parameters

• Optional Flags, Handshaking, and Initialization

• Initialization and Programmable Flags

• Data Count

• Summary

http://www.xilinx.com

32 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 3: Generating the Core

FIFO Implementation
The main FIFO Generator screen is used to define the component name and provides
configuration options for the core.

Component Name
Base name of the output files generated for this core. The name must begin with a letter
and be composed of the following characters: a to z, 0 to 9, and “_”.

FIFO Implementation
This section of the GUI allows the user to select from a set of available FIFO
implementations and supported features. The key supported features that are only
available for certain implementations are highlighted by checks in the right-margin. The
available options are listed below, with cross-references to additional information.

X-Ref Target - Figure 3-1

Figure 3-1: Main FIFO Generator Screen

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 33
UG175 April 19, 2010

FIFO Implementation

Common Clock (CLK), Block RAM

For details, see “Common Clock FIFO: Block RAM and Distributed RAM,” page 49. This
implementation optionally supports first-word-fall-through (selectable in the second GUI
screen, shown in Figure 3-2).

Common Clock (CLK), Distributed RAM

For details, see “Common Clock FIFO: Block RAM and Distributed RAM,” page 49. This
implementation optionally supports first-word-fall-through (selectable in the second GUI
screen, shown in Figure 3-2).

Common Clock (CLK), Shift Register

For details, see “Common Clock FIFO: Shift Registers,” page 49. This implementation is
only available in Virtex-4 FPGA and newer architectures.

Common Clock (CLK), Built-in FIFO

For details, see “Common Clock: Built-in FIFO,” page 48. This implementation is only
available when using the Virtex-6, Virtex-5 or Virtex-4 FPGA architectures. This
implementation optionally supports first-word fall-through (selectable in the second GUI
screen, shown in Figure 3-2).

Independent Clocks (RD_CLK, WR_CLK), Block RAM

For details, see “Independent Clocks: Block RAM and Distributed RAM,” page 45. This
implementation optionally supports asymmetric read/write ports and first-word fall-
through (selectable in the second GUI screen, shown in Figure 3-2).

Independent Clocks (RD_CLK, WR_CLK), Distributed RAM

For more information, see “Independent Clocks: Block RAM and Distributed RAM,”
page 45. This implementation optionally supports first-word fall-through (selectable in the
second GUI screen, shown in Figure 3-2).

Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO

For more information, see “Independent Clocks: Built-in FIFO,” page 47. This
implementation is only available when using Virtex-6, Virtex-5 or Virtex-4 FPGA
architectures. This implementation optionally supports first-word fall-through (selectable
in the second GUI screen, shown in Figure 3-2).

http://www.xilinx.com

34 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 3: Generating the Core

Performance Options and Data Port Parameters
This screen provides performance options and data port parameters for the core.

Read Mode
Available only when block RAM or distributed RAM FIFOs are selected. Support for built-
in FIFOs is only available for Virtex-6 and Virtex-5 FPGA implementations.

Standard FIFO

Implements a FIFO with standard latencies, and without using output registers.

First-Word Fall-Through FIFO

Implements a FIFO with registered outputs. For more information about FWFT
functionality, see “First-Word-Fall-Through FIFO Read Operation,” page 53.

X-Ref Target - Figure 3-2

Figure 3-2: Performance Options and Data Port Parameters Screen

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 35
UG175 April 19, 2010

Performance Options and Data Port Parameters

Built-in FIFO Options

Read/Write Clock Frequencies

The Read Clock Frequency and Write Clock Frequency fields can be any integer from 1 to
1000. They are used to determine the optimal implementation of the domain-crossing logic
in the core. This option is only available for built-in FIFOs with independent clocks. If the
desired frequency is not within the allowable range, scale the read and write clock
frequencies so that they fit within the valid range, while maintaining their ratio
relationship.

Important: It is critical that this information is entered and accurate. If this information is
not provided, it can result in a sub-optimal solution with incorrect core behavior.

Data Port Parameters

Write Width

For Virtex-4 FPGA Built-in FIFO macro, the valid range is 4, 9, 18 and 36. For other memory
type configurations, the valid range is 1 to 1024.

Write Depth

For Virtex-4 FPGA Built-in FIFO macro, the valid range automatically varies based on
write width selection. For Virtex-6 and Virtex-5 FPGA Built-in FIFO macro, the valid range
is 512 to 4194304. Only depths with powers of 2 are allowed.

For non Built-in FIFO, the valid range is 1 to 4194304. Only depths with powers of 2 are
allowed.

Read Width

Available only if independent clocks configuration with block RAM is selected. Valid
range must comply with asymmetric port rules. See “Non-symmetric Aspect Ratios,”
page 66.

Read Depth

Automatically calculated based on Write Width, Write Depth, and Read Width.

Implementation Options

Error Correction Checking in Block RAM or Built-in FIFO

The Error Correction Checking (ECC) feature enables built-in error correction in the
Virtex-6 and Virtex-5 FPGA block RAM and built-in FIFO macros. When this feature is
enabled, the block RAM or built-in FIFO is set to the full ECC mode, where both the
encoder and decoder are enabled.

Use Embedded Registers in Block RAM or FIFO

The block RAM macros available in Virtex-6, Virtex-5 and Virtex-4 FPGA, as well as built-
in FIFO macros available in Virtex-6 and Virtex-5 FPGA, have built-in embedded registers
that can be used to pipeline data and improve macro timing. This option enables users to

http://www.xilinx.com

36 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 3: Generating the Core

add one pipeline stage to the output of the FIFO and take advantage of the available
embedded registers; however, the ability to reset the data output of the Virtex-5 FPGA
built-in FIFO is disabled when this feature is used. For built-in FIFOs, this feature is only
supported for synchronous FIFO configurations that have only 1 FIFO macro in depth. See
“Embedded Registers in Block RAM and FIFO Macros (Virtex-6, Virtex-5 and Virtex-4
FPGAs),” page 70.

Optional Flags, Handshaking, and Initialization
This screen allows you to select the optional status flags and set the handshaking options.

Optional Flags

Almost Full Flag

Available in all FIFO implementations except those using Virtex-6, Virtex-5 or Virtex-4
FPGA built-in FIFOs. Generates an output port that indicates the FIFO is almost full (only
one more word can be written).

X-Ref Target - Figure 3-3

Figure 3-3: Optional Flags, Handshaking, and Error Injection Options Screen

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 37
UG175 April 19, 2010

Optional Flags, Handshaking, and Initialization

Almost Empty Flag

Available in all FIFO implementations except in those using Virtex-6, Virtex-5 or Virtex-4
FPGA built-in FIFOs. Generates an output port that indicates the FIFO is almost empty
(only one more word can be read).

Handshaking Options

Write Port Handshaking

Write Acknowledge

Generates write acknowledge flag which reports the success of a write operation. This
signal can be configured to be active high or low (default active high).

Overflow (Write Error)

Generates overflow flag which indicates when the previous write operation was not
successful. This signal can be configured to be active high or low (default active high).

Read Port Handshaking

Valid (Read Acknowledge)

Generates valid flag which indicates when the data on the output bus is valid. This signal
can be configured to be active high or low (default active high).

Underflow (Read Error)

Generates underflow flag to indicate that the previous read request was not successful.
This signal can be configured to be active high or low (default active high).

Error Injection

Single Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block RAM
or built-in FIFOs, with ECC option enabled. Generates an input port to inject a single bit
error on write and an output port that indicates a single bit error occurred.

Double Bit Error Injection

Available only in Virtex-6 FPGAs for both the common and independent clock block RAM
or built-in FIFOs, with ECC option enabled. Generates an input port to inject a double bit
error on write and an output port that indicates a double bit error occurred.

http://www.xilinx.com

38 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 3: Generating the Core

Initialization and Programmable Flags
Use this screen to select the initialization values and programmable flag type when
generating a specific FIFO Generator configuration.

Initialization

Reset Pin

For FIFOs implemented with block RAM or distributed RAM, a reset pin is not required,
and the input pin is optional.

• Enable Reset Synchronization. Optional selection only available for independent clock
block RAM or distributed RAM FIFOs. When unchecked, WR_RST/RD_RST is
available. See “Reset Behavior” in Chapter 4 for details.

• Asynchronous Reset. Optional selection for a common-clock FIFO implemented using
distributed or block RAM.

• Synchronous Reset. Optional selection for a a common-clock FIFO implemented using
distributed or block RAM.

X-Ref Target - Figure 3-4

Figure 3-4: Programmable Flags and Reset Screen

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 39
UG175 April 19, 2010

Initialization and Programmable Flags

Full Flags Reset Value

For block RAM, distributed RAM, and shift register configurations, the user can choose the
reset value of the full flags (PROG_FULL, ALMOST_FULL, and FULL) during reset.

Use Dout Reset

Available in Virtex-4 FPGA or newer architectures for all implementations using block
RAM, distributed RAM, shift register or Virtex-6 common clock built-in with embedded
register option. Only available if a reset pin option is selected. If selected, the DOUT output
of the FIFO will reset to the defined DOUT Reset Value (below) when the reset is asserted.
If not selected, the DOUT output of the FIFO will not be effected by the assertion of reset,
and DOUT will hold its previous value.

Disabling this feature for Spartan®-3 devices may improve timing for the distributed RAM
and shift register FIFO.

Use Dout Reset Value

Available only when Use Dout Reset is selected, this field indicates the hexidecimal value
asserted on the output of the FIFO when RST (SRST) is asserted. See Appendix C, “DOUT
Reset Value Timing” for the timing diagrams for different configurations.

Programmable Flags

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid range for
each threshold is displayed and varies depending on the options selected elsewhere in the
GUI.

Full Threshold Assert Value

Available when Programmable Full with Single or Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is provided in the
GUI. When using a single threshold constant, only the assert threshold value is used.

Full Threshold Negate Value

Available when Programmable Full with Multiple Threshold Constants is selected. Enter a
user-defined value. The valid range for this threshold is provided in the GUI.

Programmable Empty Type

Select a programmable empty threshold type from the drop-down menu. The valid range
for each threshold is displayed, and will vary depending on options selected elsewhere in
the GUI.

Empty Threshold Assert Value

Available when Programmable Empty with Single or Multiple Threshold Constants is
selected. Enter a user-defined value. The valid range for this threshold is provided in the
GUI. When using a single threshold constant, only the assert value is used.

http://www.xilinx.com

40 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 3: Generating the Core

Empty Threshold Negate Value

Available when Programmable Empty with Multiple Threshold Constants is selected.
Enter a user-defined value. The valid range for this threshold is provided in the GUI.

Data Count
Use this screen to set data count options.

Data Count Options

Use Extra Logic For More Accurate Data Counts

Only available for independent clocks FIFO with block RAM or distributed RAM, and
when using first-word fall-through. This option uses additional external logic to generate
a more accurate data count. This feature is always enabled for common clock FIFOs with
block RAM or distributed RAM and when using first-word-fall-through. See “First-Word
Fall-Through Data Count,” page 64 for details.

X-Ref Target - Figure 3-5

Figure 3-5: Data Count Screen

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 41
UG175 April 19, 2010

Summary

Data Count (Synchronized With Clk)

Available when a common clock FIFO with block RAM, distributed RAM, or shift registers
is selected.

Data Count Width

Available when Data Count is selected. Valid range is from 1 to log2 (input depth).

Write Data Count (Synchronized with Write Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

Write Data Count Width

Available when Write Data Count is selected. Valid range is from 1 to log2 (input depth).

Read Data Count (Synchronized with Read Clk)

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected.

Read Data Count Width

Available when Read Data Count is selected. Valid range is from 1 to log2 (output depth).

Summary
This screen displays a summary of the selected FIFO options, including the FIFO type,
FIFO dimensions, and the status of any additional features selected. In the Additional
Features section, most features display either Not Selected (if unused), or Selected (if used).

http://www.xilinx.com

42 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 3: Generating the Core

Note: Write depth and read depth provide the actual FIFO depths for the selected configuration.
These depths may differ slightly from the depth selected on screen 2 of the FIFO GUI.
X-Ref Target - Figure 3-6

Figure 3-6: Summary Screen

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 43
UG175 April 19, 2010

Chapter 4

Designing with the Core

This chapter describes the steps required to turn a FIFO Generator core into a fully
functioning design integrated with the user application logic. It is important to note that
depending on the configuration of the FIFO core, only a subset of the implementation
details provided are applicable. For successful use of a FIFO core, the design guidelines
discussed in this chapter must be observed.

General Design Guidelines

Know the Degree of Difficulty
A fully-compliant and feature-rich FIFO design is challenging to implement in any
technology. For this reason, it is important to understand that the degree of difficulty can
be significantly influenced by

• Maximum system clock frequency

• Targeted device architecture

• Specific user application

Ensure that design techniques are used to facilitate implementation, including pipelining
and use of constraints (timing constraints, and placement and/or area constraints).

Understand Signal Pipelining and Synchronization
To understand the nature of FIFO designs, it is important to understand how pipelining is
used to maximize performance and implement synchronization logic for clock-domain
crossing. Data written into the write interface may take multiple clock cycles before it can
be accessed on the read interface.

Synchronization Considerations

FIFOs with independent write and read clocks require that interface signals be used only in
their respective clock domains. The independent clocks FIFO handles all synchronization
requirements, enabling the user to cross between two clock domains that have no
relationship in frequency or phase.

Important: FIFO Full and Empty flags must be used to guarantee proper behavior.

Figure 4-1 shows the signals with respect to their clock domains. All signals are
synchronous to a specific clock, with the exception of RST, which performs an
asynchronous reset of the entire FIFO.

http://www.xilinx.com

44 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

.

For write operations, the write enable signal (WR_EN) and data input (DIN) are
synchronous to WR_CLK. For read operations, the read enable (RD_EN) and data output
(DOUT) are synchronous to RD_CLK. All status outputs are synchronous to their respective
clock domains and can only be used in that clock domain. The performance of the FIFO can
be measured by independently constraining the clock period for the WR_CLK and RD_CLK
input signals.

The interface signals are evaluated on their rising clock edge (WR_CLK and RD_CLK). They
can be made falling-edge active (relative to the clock source) by inserting an inverter
between the clock source and the FIFO clock inputs. This inverter is absorbed into the
internal FIFO control logic and does not cause a decrease in performance or increase in
logic utilization.

Initializing the FIFO Generator
When designing with the built-in FIFO or common clock shift register FIFO, the FIFO must
be reset after the FPGA is configured and before operation begins. An asynchronous reset
pin (RST) is provided, which is an asynchronous reset that clears the internal counters and
output registers.

For FIFOs implemented with block RAM or distributed RAM, a reset is not required, and
the input pin is optional. For common clock configurations, users have the option of
asynchronous or synchronous reset. For independent clock configurations, users have the
option of asynchronous reset (RST) or synchronous reset (WR_RST/RD_RST) with respect
to respective clock domains.

When asynchronous reset is implemented (Enable Reset Synchronization option is
selected), it is synchronized to the clock domain in which it is used to ensure that the FIFO
initializes to a known state. This synchronization logic allows for proper reset timing of the
core logic, avoiding glitches and metastable behavior. The reset pulse and synchronization
delay requirements are dependent on the FIFO implementation types.

X-Ref Target - Figure 4-1

Figure 4-1: FIFO with Independent Clocks: Write and Read Clock Domains

Note: Optional ports represented in italics

DOUT[M:0]

EMPTY

RST

RD_EN

RD_CLK

PROG_FULL_THRESH_ASSERT

PROG_FULL_THRESH_NEGATE

WR_RST

PROG_FULL_THRESH

Write Clock
Domain

Read Clock
Domain

FULL

WR_EN

DIN[N:0]

WR_CLK

ALMOST_FULL

PROG_FULL

WR_ACK

OVERFLOW

ALMOST_EMPTY

PROG_EMPTY

VALID

UNDERFLOW

PROG_EMPTY_THRESH_ASSERT

PROG_EMPTY_THRESH_NEGATE

RD_RST

PROG_EMPTY_THRESH

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 45
UG175 April 19, 2010

FIFO Implementations

When WR_RST/RD_RST is implemented (Enable Reset Synchronization option is not
selected), the WR_RST/RD_RST is treated as a synchronous reset to the respective clock
domain. The write clock domain remains in reset state as long as WR_RST is asserted, and
the read clock domain remains in reset state as long as RD_RST is asserted. See “Reset
Behavior,” page 73.

FIFO Implementations
Each FIFO configuration has a set of allowable features, as defined in Table 2-3, page 21.

Independent Clocks: Block RAM and Distributed RAM
Figure 4-2 illustrates the functional implementation of a FIFO configured with
independent clocks. This implementation uses block RAM or distributed RAM for

http://www.xilinx.com

46 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

memory, counters for write and read pointers, conversions between binary and Gray code
for synchronization across clock domains, and logic for calculating the status flags.

X-Ref Target - Figure 4-2

Figure 4-2: Functional Implementation of a FIFO with Independent Clock Domains

Write Flag
Logic

Read Counter

Gray to Binary
Converters

Read Flag
Logic

Binary to Gray
Converters

OPTIONAL:
First Word Fall
Through Logic

Write Counter

Binary to Gray
Converter

Gray to Binary
Converter

WR_EN

DIN

DOUT

RD_EN

FULL

ALMOST_FULL

PROG_FULL

WR_DATA_COUNT

WRITE CLOCK DOMAIN READ CLOCK DOMAIN

WRITE PORT READ PORT

ADDRB

DOUTADDRA

DIN

WE

MEMORY

RD_DATA_COUNT

PROG_EMPTY

ALMOST_EMPTY

EMPTY

Write Counter

Read Counter

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 47
UG175 April 19, 2010

FIFO Implementations

This FIFO is designed to support an independent read clock (RD_CLK) and write clock
(WR_CLK); in other words, there is no required relationship between RD_CLK and WR_CLK
with regard to frequency or phase. Table 4-1 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY is
determined by the phase and frequency relationship between the write and read clocks.
For additional information refer to the “Synchronization Considerations,” page 43.

Independent Clocks: Built-in FIFO
Figure 4-3 illustrates the functional implementation of FIFO configured with independent
clocks using the Virtex-6 and Virtex-5 FPGA built-in FIFO primitive. This design
implementation consists of cascaded built-in FIFO primitives and handshaking logic. The
number of built-in primitives depends on the FIFO width and depth requested.

The Virtex-4 FPGA built-in FIFO implementation allows generation of a single primitive.
The generated core includes a FIFO flag patch (defined in "Solution 1:
Synchronous/Asynchronous Clock Work-Arounds," in the Virtex-4 FPGA User Guide).

Table 4-1: Interface Signals and Corresponding Clock Domains

WR_CLK RD_CLK

DIN DOUT

WR_EN RD_EN

FULL EMPTY

ALMOST_FULL ALMOST_EMPTY

PROG_FULL PROG_EMPTY

WR_ACK VALID

OVERFLOW UNDERFLOW

WR_DATA_COUNT RD_DATA_COUNT

WR_RST SBITERR

INJECTSBITERR DBITERR

INJECTDBITERR RD_RST

http://www.xilinx.com

48 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

This FIFO is designed to support an independent read clock (RD_CLK) and write clock
(WR_CLK); in other words, there is no required relationship between RD_CLK and WR_CLK
with regard to frequency or phase. Table 4-2 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY is
determined by the phase and frequency relationship between the write and read clocks.
For additional information, see “Synchronization Considerations,” page 43.

For Virtex-6 and Virtex-5 FPGA built-in FIFO configurations, the built-in ECC feature in
the FIFO macro is provided. For more information, see “Built-in Error Correction
Checking,” page 71.

Common Clock: Built-in FIFO
The FIFO Generator supports FIFO cores using the built-in FIFO primitive with a common
clock. This provides users the ability to use the built-in FIFO, while requiring only a single

X-Ref Target - Figure 4-3

Figure 4-3: Functional Implementation of Built-in FIFO

Table 4-2: Interface Signals and Corresponding Clock Domains

WR_CLK RD_CLK

DIN DOUT

WR_EN RD_EN

FULL EMPTY

PROG_FULL PROG_EMPTY

WR_ACK VALID

OVERFLOW UNDERFLOW

INJECTSBITERR SBITERR

INJECTDBITERR DBITERR

WRITE DOMAIN READ DOMAIN

DOUT

Logic For
Optional Flags:
Write Domain

DIN

WE RE
WR_EN

DIN

WR_ACK

OVERFLOW

FULL

Logic For
Optional Flags:
Read Domain

EMPTY

RD_EN

DOUT
Built-In
FIFO

UNDERFLOW

VALID

PROG_FULL PROG_EMPTY
Cascaded Built-in FIFO Primitives

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 49
UG175 April 19, 2010

FIFO Implementations

clock interface. The behavior of the common clock configuration with built-in FIFO is
identical to the independent clock configuration with built-in FIFO, except all operations
are in relation to the common clock (CLK). See “Independent Clocks: Built-in FIFO,”
page 47, for more information.

Common Clock FIFO: Block RAM and Distributed RAM
Figure 4-4 illustrates the functional implementation of a FIFO configured with a common
clock using block RAM or distributed RAM for memory. All signals are synchronous to a
single clock input (CLK). This design implements counters for write and read pointers and
logic for calculating the status flags. An optional synchronous (SRST) or asynchronous
(RST) reset signal is also available.

Common Clock FIFO: Shift Registers
Figure 4-5 illustrates the functional implementation of a FIFO configured with a common
clock using shift registers for memory. All operations are synchronous to the same clock

X-Ref Target - Figure 4-4

Figure 4-4: Functional Implementation of a Common Clock FIFO using
Block RAM or Distributed RAM

Flag
Logic

MEMORY

WRITE PORT READ PORT

ADDRA

DIN

WE

ADDRB

DOUT

Write
Counter

DIN

WR_EN

Read
Counter

DOUT

RD_EN

EMPTY

ALMOST_EMPTY

PROG_EMPTY

DATA_COUNT

FULL

ALMOST_FULL

PROG_FULL

http://www.xilinx.com

50 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

input (CLK). This design implements a single up/down counter for both the write and
read pointers and logic for calculating the status flags.

FIFO Usage and Control

Write Operation
This section describes the behavior of a FIFO write operation and the associated status
flags. When write enable is asserted and the FIFO is not full, data is added to the FIFO from
the input bus (DIN) and write acknowledge (WR_ACK) is asserted. If the FIFO is
continuously written to without being read, it fills with data. Write operations are only
successful when the FIFO is not full. When the FIFO is full and a write is initiated, the
request is ignored, the overflow flag is asserted and there is no change in the state of the
FIFO (overflowing the FIFO is non-destructive).

ALMOST_FULL and FULL Flags

Note: The Built-in FIFO for Virtex-6, Virtex-5 and Virtex-4 FPGAs do not support the
ALMOST_FULL flag.

The almost full flag (ALMOST_FULL) indicates that only one more write can be performed
before FULL is asserted. This flag is active high and synchronous to the write clock
(WR_CLK).

The full flag (FULL) indicates that the FIFO is full and no more writes can be performed
until data is read out. This flag is active high and synchronous to the write clock (WR_CLK).
If a write is initiated when FULL is asserted, the write request is ignored and OVERFLOW is
asserted.

X-Ref Target - Figure 4-5

Figure 4-5: Functional Implementation of a Common Clock FIFO using Shift
Registers

WRITE PORT READ PORT

Pointer
Counter

MEMORY

ADDR

Flag
Logic

DIN

WE RE

DOUT
DIN

WR_EN

DOUT

RD_EN

EMPTY

ALMOST_EMPTY

PROG_EMPTY

DATA_COUNT

FULL

ALMOST_FULL

PROG_FULL

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 51
UG175 April 19, 2010

FIFO Usage and Control

Important: For the Virtex-4 FPGA built-in FIFO implementation, the Full signal has an
extra cycle of latency. Use Write Acknowledge to verify success or Programmable Full for
an earlier indication.

Example Operation

Figure 4-6 shows a typical write operation. The user asserts WR_EN, causing a write
operation to occur on the next rising edge of the WR_CLK. Because the FIFO is not full,
WR_ACK is asserted, acknowledging a successful write operation. When only one
additional word can be written into the FIFO, the FIFO asserts the ALMOST_FULL flag.
When ALMOST_FULL is asserted, one additional write causes the FIFO to assert FULL.
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. Once the user performs one or more read
operations, the FIFO deasserts FULL, and data can successfully be written to the FIFO, as is
indicated by the assertion of WR_ACK and deassertion of OVERFLOW.

Note: The Virtex-4 FPGA built-in FIFO implementation shows an extra cycle of latency on the FULL
flag.

Read Operation
This section describes the behavior of a FIFO read operation and the associated status
flags. When read enable is asserted and the FIFO is not empty, data is read from the FIFO
on the output bus (DOUT), and the valid flag (VALID) is asserted. If the FIFO is
continuously read without being written, the FIFO empties. Read operations are successful
when the FIFO is not empty. When the FIFO is empty and a read is requested, the read
operation is ignored, the underflow flag is asserted and there is no change in the state of
the FIFO (underflowing the FIFO is non-destructive).

ALMOST_EMPTY and EMPTY Flags

Note: The Virtex-6, Virtex-5 and Virtex-4 FPGAs built-in FIFO does not support the
ALMOST_EMPTY flag.

The almost empty flag (ALMOST_EMPTY) indicates that the FIFO will be empty after one
more read operation. This flag is active high and synchronous to RD_CLK. This flag is
asserted when the FIFO has one remaining word that can be read.

The empty flag (EMPTY) indicates that the FIFO is empty and no more reads can be
performed until data is written into the FIFO. This flag is active high and synchronous to
the read clock (RD_CLK). If a read is initiated when EMPTY is asserted, the request is
ignored and UNDERFLOW is asserted.

X-Ref Target - Figure 4-6

Figure 4-6: Write Operation for a FIFO with Independent Clocks

WR_CLK

WR_EN

FULL

ALMOST_FULL

WR_ACK

OVERFLOW

DIN D1 D2 D3 D4 D5 D12 D13

http://www.xilinx.com

52 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Common Clock Note

When write and read operations occur simultaneously while EMPTY is asserted, the write
operation is accepted and the read operation is ignored. On the next clock cycle, EMPTY is
deasserted and UNDERFLOW is asserted.

Modes of Read Operation

The FIFO Generator supports two modes of read options, standard read operation and
first-word fall-through (FWFT) read operation. The standard read operation provides the
user data on the cycle after it was requested. The FWFT read operation provides the user
data on the same cycle in which it is requested.

Table 4-3 details the supported implementations for FWFT.

Standard FIFO Read Operation

For a standard FIFO read operation, after read enable is asserted and if the FIFO is not
empty, the next data stored in the FIFO is driven on the output bus (DOUT) and the valid
flag (VALID) is asserted.

Figure 4-7 shows a standard read access. Once the user writes at least one word into the
FIFO, EMPTY is deasserted—indicating data is available to be read. The user asserts
RD_EN, causing a read operation to occur on the next rising edge of RD_CLK. The FIFO
outputs the next available word on DOUT and asserts VALID, indicating a successful read
operation. When the last data word is read from the FIFO, the FIFO asserts EMPTY. If the
user continues to assert RD_EN while EMPTY is asserted, the read request is ignored, VALID
is deasserted, and UNDERFLOW is asserted. Once the user performs a write operation, the
FIFO deasserts EMPTY, allowing the user to resume valid read operations, as indicated by
the assertion of VALID and deassertion of UNDERFLOW.

Table 4-3: Implementation-Specific Support for First-Word Fall-Through

FIFO Implementation FWFT Support

Independent Clocks

Block RAM

Distributed RAM

Built-in (1)

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in (1)

Notes:
1. Only supported in Virtex-6 and Virtex-5 FPGAs.

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 53
UG175 April 19, 2010

FIFO Usage and Control

First-Word-Fall-Through FIFO Read Operation

The first-word-fall-through (FWFT) feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is available in
the FIFO, the first word falls through the FIFO and appears automatically on the output
bus (DOUT). Once the first word appears on DOUT, EMPTY is deasserted indicating one or
more readable words in the FIFO, and VALID is asserted, indicating a valid word is present
on DOUT.

Figure 4-8 shows a FWFT read access. Initially, the FIFO is not empty, the next available
data word is placed on the output bus (DOUT), and VALID is asserted. When the user
asserts RD_EN, the next rising clock edge of RD_CLK places the next data word onto DOUT.
After the last data word has been placed on DOUT, an additional read request by the user
causes the data on DOUT to become invalid, as indicated by the deassertion of VALID and
the assertion of EMPTY. Any further attempts to read from the FIFO results in an underflow
condition.

Unlike the standard read mode, the first-word-fall-through empty flag is asserted after the
last data is read from the FIFO. When EMPTY is asserted, VALID is deasserted. In the
standard read mode, when EMPTY is asserted, VALID is asserted for 1 clock cycle. The
FWFT feature also increases the effective read depth of the FIFO by two read words.

The FWFT feature adds two clock cycle latency to the deassertion of empty, when the first
data is written into a empty FIFO.

Note: For every write operation, an equal number of read operations is required to empty
the FIFO–this is true for both the first-word-fall-through and standard FIFO.

X-Ref Target - Figure 4-7

Figure 4-7: Standard Read Operation for a FIFO with Independent Clocks

X-Ref Target - Figure 4-8

Figure 4-8: FWFT Read Operation for a FIFO with Independent Clocks

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

http://www.xilinx.com

54 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Common Clock FIFO, Simultaneous Read and Write Operation

Figure 4-9 shows a typical write and read operation. A write is issued to the FIFO, resulting
in the deassertion of the EMPTY flag. A simultaneous write and read is then issued,
resulting in no change in the status flags. Once two or more words are present in the FIFO,
the ALMOST_EMPTY flag is deasserted. Write requests are then issued to the FIFO, resulting
in the assertion of ALMOST_FULL when the FIFO can only accept one more write (without
a read). A simultaneous write and read is then issued, resulting in no change in the status
flags. Finally one additional write without a read results in the FIFO asserting FULL,
indicating no further data can be written until a read request is issued.

Handshaking Flags
Handshaking flags (valid, underflow, write acknowledge and overflow) are supported to
provide additional information regarding the status of the write and read operations. The
handshaking flags are optional, and can be configured as active high or active low through
the CORE Generator GUI (see Handshaking Options in Chapter 4 for more information).
These flags (configured as active high) are illustrated in Figure 4-10.

Write Acknowledge

The write acknowledge flag (WR_ACK) is asserted at the completion of each successful
write operation and indicates that the data on the DIN port has been stored in the FIFO.
This flag is synchronous to the write clock (WR_CLK).

Valid

The operation of the valid flag (VALID) is dependent on the read mode of the FIFO. This
flag is synchronous to the read clock (RD_CLK).

Standard FIFO Read Operation

For standard read operation, the VALID flag is asserted at the rising edge of RD_CLK for
each successful read operation, and indicates that the data on the DOUT bus is valid. When
a read request is unsuccessful (when the FIFO is empty), VALID is not asserted.

FWFT FIFO Read Operation

For FWFT read operation, the VALID flag indicates the data on the output bus (DOUT) is
valid for the current cycle. A read request does not have to happen for data to be present
and valid, as the first-word fall-through logic automatically places the next data to be read

X-Ref Target - Figure 4-9

Figure 4-9: Write and Read Operation for a FIFO with Common Clocks

CLK

WR_EN

EMPTY

RD_EN

ALMOST_EMPTY

FULL

ALMOST_FULL

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 55
UG175 April 19, 2010

FIFO Usage and Control

on the DOUT bus. VALID is asserted if there is one or more words in the FIFO. VALID is
deasserted when there are no more words in the FIFO.

Example Operation

Figure 4-10 illustrates the behavior of the FIFO flags. On the write interface, FULL is not
asserted and writes to the FIFO are successful (as indicated by the assertion of WR_ACK).
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
EMPTY, the FIFO accepts read requests. In standard FIFO operation, VALID is asserted and
DOUT is updated on the clock cycle following the read request. In FWFT operation, VALID
is asserted and DOUT is updated prior to a read request being issued. When a read request
is issued while EMPTY is asserted, VALID is deasserted and UNDERFLOW is asserted,
indicating an underflow condition.

http://www.xilinx.com

56 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Underflow

The underflow flag (UNDERFLOW) is used to indicate that a read operation is unsuccessful.
This occurs when a read is initiated and the FIFO is empty. This flag is synchronous with
the read clock (RD_CLK). Underflowing the FIFO does not change the state of the FIFO (it
is non-destructive).

X-Ref Target - Figure 4-10

Figure 4-10: Handshaking Signals for a FIFO with Independent Clocks

D1 D3D2

Write Interface

WR_EN

DIN

WR_ACK

WR_CLK

FULL

OVERFLOW

D1 D3D2

FWFT Read Interface

RD_CLK

RD_EN

EMPTY

UNDERFLOW

VALID

DOUT

D1 D3D2

Standard Read Interface

VALID

RD_CLK

RD_EN

EMPTY

UNDERFLOW

DOUT

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 57
UG175 April 19, 2010

FIFO Usage and Control

Overflow

The overflow flag (OVERFLOW) is used to indicate that a write operation is unsuccessful.
This flag is asserted when a write is initiated to the FIFO while FULL is asserted. The
overflow flag is synchronous to the write clock (WR_CLK). Overflowing the FIFO does not
change the state of the FIFO (it is non-destructive).

Example Operation

Figure 4-11 illustrates the Handshaking flags. On the write interface, FULL is deasserted
and therefore writes to the FIFO are successful (indicated by the assertion of WR_ACK).
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
EMPTY, the FIFO accepts read requests. Following a read request, VALID is asserted and
DOUT is updated. When a read request is issued while EMPTY is asserted, VALID is
deasserted and UNDERFLOW is asserted, indicating an underflow condition.

Programmable Flags
The FIFO supports programmable flags to indicate that the FIFO has reached a user-
defined fill level.

• Programmable full (PROG_FULL) indicates that the FIFO has reached a user-defined
full threshold.

• Programmable empty (PROG_EMPTY) indicates that the FIFO has reached a user-
defined empty threshold.

X-Ref Target - Figure 4-11

Figure 4-11: Handshaking Signals for a FIFO with Common Clocks

D1

WR_EN

DIN

WR_ACK

VALID

CLK

CLK

RD_EN

FULL

EMPTY

OVERFLOW

UNDERFLOW

D1DOUT D3

D3D2

D2

Write Interface

Read Interface

http://www.xilinx.com

58 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

For these thresholds, the user can set a constant value or choose to have dedicated input
ports, enabling the thresholds to change dynamically in circuit. Hysteresis is also
optionally supported, by providing unique assert and negate values for each flag. Detailed
information about these options are provided below. For information about the latency
behavior of the programmable flags, see “Latency,” page 82.

Programmable Full

The FIFO Generator supports four ways to define the programmable full threshold:

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the CORE Generator GUI and accessed within the
programmable flags window (Figure 3-4).

The programmable full flag (PROG_FULL) is asserted when the number of entries in the
FIFO is greater than or equal to the user-defined assert threshold. When the programmable
full flag is asserted, the FIFO can continue to be written to until the full flag (FULL) is
asserted. If the number of words in the FIFO is less than the negate threshold, the flag is
deasserted.

Note: If a write operation occurs on a rising clock edge that causes the number of words to meet or
exceed the programmable full threshold, then the programmable full flag will assert on the next rising
clock edge. The deassertion of the programmable full flag has a longer delay, and depends on the
relationship between the write and read clocks.

Programmable Full: Single Threshold

This option enables the user to set a single threshold value for the assertion and
deassertion of PROG_FULL. When the number of entries in the FIFO is greater than or
equal to the threshold value, PROG_FULL is asserted. The deassertion behavior differs
between built-in and non built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO has to be less than the threshold value
-1 before PROG_FULL is deasserted. For non built-in FIFOs, if the number of words in the
FIFO is less than the negate threshold, the flag is deasserted.

Two options are available to implement this threshold:

• Single threshold constant. User specifies the threshold value through the CORE
Generator GUI. Once the core is generated, this value can only be changed by re-
generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

• Single threshold with dedicated input port (non-built-in FIFOs only). User specifies
the threshold value through an input port (PROG_FULL_THRESH) on the core. This
input can be changed while the FIFO is in reset, providing the user the flexibility to
change the programmable full threshold in-circuit without re-generating the core.

Note: See the CORE Generator GUI screen for valid ranges for each threshold.

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 59
UG175 April 19, 2010

FIFO Usage and Control

Figure 4-12 shows the programmable full flag with a single threshold for a non-built-in
FIFO. The user writes to the FIFO until there are seven words in the FIFO. Because the
programmable full threshold is set to seven, the FIFO asserts PROG_FULL once seven
words are written into the FIFO. Note that both write data count (WR_DATA_COUNT) and
PROG_FULL have one clock cycle of delay. Once the FIFO has six or fewer words in the
FIFO, PROG_FULL is deasserted.

Programmable Full: Assert and Negate Thresholds

This option enables the user to set separate values for the assertion and deassertion of
PROG_FULL. When the number of entries in the FIFO is greater than or equal to the assert
value, PROG_FULL is asserted. When the number of entries in the FIFO is less than the
negate value, PROG_FULL is deasserted. Note that this feature is not available for built-in
FIFOs.

Two options are available to implement these thresholds:

• Assert and negate threshold constants: User specifies the threshold values through the
CORE Generator GUI. Once the core is generated, these values can only be changed
by re-generating the core. This option consumes fewer resources than the assert and
negate thresholds with dedicated input ports.

• Assert and negate thresholds with dedicated input ports: User specifies the threshold
values through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing the user the flexibility to change the values of the
programmable full assert (PROG_FULL_THRESH_ASSERT) and negate
(PROG_FULL_THRESH_NEGATE) thresholds in-circuit without re-generating the core.

Note: The full assert value must be larger than the full negate value. Refer to the CORE
Generator GUI for valid ranges for each threshold.

Figure 4-13 shows the programmable full flag with assert and negate thresholds. The user
writes to the FIFO until there are 10 words in the FIFO. Because the assert threshold is set
to 10, the FIFO then asserts PROG_FULL. The negate threshold is set to seven, and the FIFO
deasserts PROG_FULL once six words or fewer are in the FIFO. Both write data count
(WR_DATA_COUNT) and PROG_FULL have one clock cycle of delay.

X-Ref Target - Figure 4-12

Figure 4-12: Programmable Full Single Threshold: Threshold Set to 7

WR_CLK

WR_DATA_COUNT

WR_ACK

PROG_FULL

WR_EN

5 74 6 8 67

http://www.xilinx.com

60 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Programmable Full Threshold Range Restrictions

The programmable full threshold ranges depend on several features that dictate the way
the FIFO is implemented, and include the following features:

• FIFO Implementation Type (Built-in FIFO or non Built-in FIFO, Common or
Independent Clock FIFOs, and so forth)

• Symmetric or Non-symmetric Port Aspect Ratio

• Read Mode (Standard or First-Word-Fall-Through)

• Read and Write Clock Frequencies (Virtex-6, Virtex-5 and Virtex-4 FPGA Built-in
FIFOs only)

The FIFO Generator GUI automatically parameterizes the threshold ranges based on these
features, allowing you to choose only within the valid ranges. Note that for the Common
or Independent Clock Built-in FIFO implementation type, you can only choose a threshold
range within 1 primitive deep of the FIFO depth, due to the core implementation. If a
wider threshold range is required, use the Common or Independent Clock Block RAM
implementation type.

Programmable Empty

The FIFO Generator supports four ways to define the programmable empty thresholds:

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the CORE Generator GUI and accessed within the
programmable flags window (Figure 3-4).

The programmable empty flag (PROG_EMPTY) is asserted when the number of entries in
the FIFO is less than or equal to the user-defined assert threshold. If the number of words
in the FIFO is greater than the negate threshold, the flag is deasserted.

Note: If a read operation occurs on a rising clock edge that causes the number of words in the FIFO
to be equal to or less than the programmable empty threshold, then the programmable empty flag will
assert on the next rising clock edge. The deassertion of the programmable empty flag has a longer
delay, and depends on the read and write clocks.

X-Ref Target - Figure 4-13

Figure 4-13: Programmable Full with Assert and Negate Thresholds: Assert Set to 10
and Negate Set to 7

9 98

WR_CLK

WR_DATA_COUNT

WR_ACK

PROG_FULL

WR_EN

7810 6

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 61
UG175 April 19, 2010

FIFO Usage and Control

Programmable Empty: Single Threshold

This option enables you to set a single threshold value for the assertion and deassertion of
PROG_EMPTY. When the number of entries in the FIFO is less than or equal to the threshold
value, PROG_EMPTY is asserted. The deassertion behavior differs between built-in and non
built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO must be greater than the threshold
value + 1 before PROG_EMPTY is deasserted. For non built-in FIFOs, if the number of
entries in the FIFO is greater than threshold value, PROG_EMPTY is deasserted.

Two options are available to implement this threshold:

• Single threshold constant: User specifies the threshold value through the CORE
Generator GUI. Once the core is generated, this value can only be changed by re-
generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

• Single threshold with dedicated input port: User specifies the threshold value
through an input port (PROG_EMPTY_THRESH) on the core. This input can be changed
while the FIFO is in reset, providing the flexibility to change the programmable empty
threshold in-circuit without re-generating the core.

Note: See the CORE Generator GUI for valid ranges for each threshold.

Figure 4-14 shows the programmable empty flag with a single threshold for a non-built-in
FIFO. The user writes to the FIFO until there are five words in the FIFO. Because the
programmable empty threshold is set to four, PROG_EMPTY is asserted until more than
four words are present in the FIFO. Once five words (or more) are present in the FIFO,
PROG_EMPTY is deasserted. Both read data count (RD_DATA_COUNT) and PROG_EMPTY
have one clock cycle of delay.

Programmable Empty: Assert and Negate Thresholds

This option lets the user set separate values for the assertion and deassertion of
PROG_EMPTY. When the number of entries in the FIFO is less than or equal to the assert
value, PROG_EMPTY is asserted. When the number of entries in the FIFO is greater than the
negate value, PROG_EMPTY is deasserted. This feature is not available for built-in FIFOs.

Two options are available to implement these thresholds.

• Assert and negate threshold constants. The threshold values are specified through
the CORE Generator GUI. Once the core is generated, these values can only be
changed by re-generating the core. This option consumes fewer resources than the
assert and negate thresholds with dedicated input ports.

X-Ref Target - Figure 4-14

Figure 4-14: Programmable Empty with Single Threshold: Threshold Set to 4

RD_CLK

RD_DATA_COUNT

VALID

RD_EN

44 5 36 5

PROG_EMPTY

7

http://www.xilinx.com

62 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

• Assert and negate thresholds with dedicated input ports. The threshold values are
specified through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing the user the flexibility to change the values of the
programmable empty assert (PROG_EMPTY_THRESH_ASSERT) and negate
(PROG_EMPTY_THRESH_NEGATE) thresholds in-circuit without regenerating the core.

Note: The empty assert value must be less than the empty negate value. Refer to the CORE
Generator GUI for valid ranges for each threshold.

Figure 4-15 shows the programmable empty flag with assert and negate thresholds. The
user writes to the FIFO until there are eleven words in the FIFO; because the
programmable empty deassert value is set to ten, PROG_EMPTY is deasserted when more
than ten words are in the FIFO. Once the FIFO contains less than or equal to the
programmable empty negate value (set to seven), PROG_EMPTY is asserted. Both read data
count (RD_DATA_COUNT) and PROG_EMPTY have one clock cycle of delay.

Programmable Empty Threshold Range Restrictions

The programmable empty threshold ranges depend on several features that dictate the
way the FIFO is implemented, including the following:

• FIFO Implementation Type (Built-in FIFO or non Built-in FIFO, Common or
Independent Clock FIFOs, and so forth)

• Symmetric or Non-symmetric Port Aspect Ratio

• Read Mode (Standard or First-Word-Fall-Through)

• Read and Write Clock Frequencies (Virtex-6, Virtex-5, and Virtex-4 FPGA Built-in
FIFOs only)

The FIFO Generator GUI automatically parameterizes the threshold ranges based on these
features, allowing you to choose only within the valid ranges. Note that for Common or
Independent Clock Built-in FIFO implementation type, you can only choose a threshold
range within 1 primitive deep of the FIFO depth due to the core implementation. If a wider
threshold range is needed, use the Common or Independent Clock Block RAM
implementation type.

Data Counts
DATA_COUNT tracks the number of words in the FIFO. You can specify the width of the
data count bus with a maximum width of log2 (FIFO depth). If the width specified is
smaller than the maximum allowable width, the bus is truncated by removing the lower
bits. These signals are optional outputs of the FIFO Generator, and are enabled through the
CORE Generator GUI. Table 4-4 identifies data count support for each FIFO
implementation. For information about the latency behavior of data count flags, see
“Latency,” page 82.

X-Ref Target - Figure 4-15

Figure 4-15: Programmable Empty with Assert and Negate Thresholds:
Assert Set to 7 and Negate Set to 10

RD_CLK

RD_DATA_COUNT

PROG_EMPTY

RD_EN

8 9 1010 711 9 8

VALID

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 63
UG175 April 19, 2010

FIFO Usage and Control

Data Count (Common Clock FIFO Only)

Data Count output (DATA_COUNT) accurately reports the number of words available in a
Common Clock FIFO. You can specify the width of the data count bus with a maximum
width of log2(depth). If the width specified is smaller than the maximum allowable width,
the bus is truncated with the lower bits removed.

For example, you can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO
with a quarter resolution, providing the status of the contents of the FIFO for read and
write operations.

Note: If a read or write operation occurs on a rising edge of CLK, the data count port is
updated at the same rising edge of CLK.

Read Data Count (Independent Clock FIFO Only)

Read data count (RD_DATA_COUNT) pessimistically reports the number of words available
for reading. The count is guaranteed to never over-report the number of words available in
the FIFO (although it may temporarily under-report the number of words available) to
ensure that the user design never underflows the FIFO. The user can specify the width of
the read data count bus with a maximum width of log2 (read depth). If the width specified
is smaller than the maximum allowable width, the bus is truncated with the lower bits
removed.

For example, the user can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO,
with a quarter resolution. This provides a status of the contents of the FIFO for the read
clock domain.

Note: If a read operation occurs on a rising clock edge of RD_CLK, that read is reflected on
the RD_DATA_COUNT signal following the next rising clock edge. A write operation on the
WR_CLK clock domain may take a number of clock cycles before being reflected in the
RD_DATA_COUNT.

Write Data Count (Independent Clock FIFO Only)

Write data count (WR_DATA_COUNT) pessimistically reports the number of words written
into the FIFO. The count is guaranteed to never under-report the number of words in the
FIFO (although it may temporarily over-report the number of words present) to ensure
that the user never overflows the FIFO. The user can specify the width of the write data

Table 4-4: Implementation-specific Support for Data Counts

FIFO Implementation Data Count Support

Independent Clocks

Block RAM

Distributed RAM

Built-in

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in

http://www.xilinx.com

64 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

count bus with a maximum width of log2 (write depth). If the width specified is smaller
than the maximum allowable width, the bus is truncated with the lower bits removed.

For example, you can only use two bits out of a maximum allowable three bits (provided a
FIFO depth of eight). These two bits indicate the number of words in the FIFO, with a
quarter resolution. This provides a status of the contents of the FIFO for the write clock
domain.

Note: If a write operation occurs on a rising clock edge of WR_CLK, that write will be
reflected on the WR_DATA_COUNT signal following the next rising clock edge. A read
operation, which occurs on the RD_CLK clock domain, may take a number of clock cycles
before being reflected in the WR_DATA_COUNT.

First-Word Fall-Through Data Count

By providing the capability to read the next data word before requesting it, first-word fall-
through (FWFT) implementations increase the depth of the FIFO by 2 read words. Using
this configuration, the FIFO Generator enables the user to generate data count in two ways:

• Approximate Data Count

• More Accurate Data Count (Use Extra Logic)

Approximate Data Count

Approximate Data Count behavior is the default option in the CORE Generator GUI for
independent clock block RAM and distributed RAM FIFOs. This feature is not available for
common clock FIFOs. The width of the WR_DATA_COUNT and RD_DATA_COUNT is
identical to the non first-word-fall-through configurations (log2 (write depth) and log2
(read depth), respectively) but the data counts reported is an approximation because the
actual full depth of the FIFO is not supported.

Using this option, you can use specific bits in WR_DATA_COUNT and RD_DATA_COUNT to
approximately indicate the status of the FIFO, for example, half full, quarter full, and so
forth.

For example, for a FIFO with a depth of 16, symmetric read and write port widths, and the
first-word-fall-through option selected, the actual FIFO depth increases from 15 to 17.
When using approximate data count, the width of WR_DATA_COUNT and RD_DATA_COUNT
is 4 bits, with a maximum of 15. For this option, you can use the assertion of the MSB bit of
the data count to indicate that the FIFO is approximately half full.

More Accurate Data Count (Use Extra Logic)

This feature is enabled when Use Extra Logic for More Accurate Data Counts is selected in
the CORE Generator GUI. In this configuration, the width of WR_DATA_COUNT,
RD_DATA_COUNT, and DATA_COUNT is log2(write depth)+1, log2(read depth)+1, and
log2(depth)+1, respectively to accommodate the increase in depth in the first-word-fall-
through case and to ensure accurate data count is provided.

Note that when using this option, you cannot use any one bit of WR_DATA_COUNT,
RD_DATA_COUNT, and DATA_COUNT to indicate the status of the FIFO, for example,
approximately half full, quarter full, and so forth.

For example, for an independent FIFO with a depth of 16, symmetric read and write port
widths, and the first-word-fall-through option selected, the actual FIFO depth increases
from 15 to 17. When using accurate data count, the width of the WR_DATA_COUNT and
RD_DATA_COUNT is 5 bits, with a maximum of 31. For this option, you must use the

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 65
UG175 April 19, 2010

FIFO Usage and Control

assertion of both the MSB and MSB-1 bit of the data count to indicate that the FIFO is at
least half full.

Data Count Behavior

For FWFT implementations using More Accurate Data Counts (Use Extra Logic),
DATA_COUNT is guaranteed to be accurate when words are present in the FIFO, with the
exception of when its near empty or almost empty or when initial writes occur on an
empty FIFO. In these scenarios, DATA_COUNT may be incorrect on up to two words.

Table 4-5 defines the value of DATA_COUNT when FIFO is empty.

From the point-of-view of the write interface, DATA_COUNT is always accurate, reporting
the first word immediately once its written to the FIFO. However, from the point-of-view
of the read interface, the DATA_COUNT output may over-report by up to two words until
ALMOST_EMPTY and EMPTY have both deasserted. This is due to the latency of EMPTY
deassertion in the first-word-fall-through FIFO (see Table 4-17). This latency allows
DATA_COUNT to reflect written words which may not yet be available for reading.

From the point-of-view of the read interface, the data count starts to transition from over-
reporting to accurate-reporting at the deassertion to empty. This transition completes after
ALMOST_EMPTY deasserts. Before ALMOST_EMPTY deasserts, the DATA_COUNT signal may
exhibit the following atypical behaviors:

• From the read-interface perspective, DATA_COUNT may over-report up to two words.

Write Data Count Behavior

Even for FWFT implementations using More Accurate Data Counts (Use Extra Logic),
WR_DATA_COUNT will still pessimistically report the number of words written into the
FIFO. However, the addition of this feature will cause WR_DATA_COUNT to further over-
report up to two read words (and 1 to 16 write words, depending on read and write port
aspect ratio) when the FIFO is at or near empty or almost empty.

Table 4-5 defines the value of WR_DATA_COUNT when the FIFO is empty.

The WR_DATA_COUNT starts to transition out of over-reporting two extra read words at the
deassertion of EMPTY. This transition completes several clock cycles after ALMOST_EMPTY
deasserts. Note that prior to the transition period, WR_DATA_COUNT will always over-
report by at least two read words. During the transition period, the WR_DATA_COUNT
signal may exhibit the following strange behaviors:

• WR_DATA_COUNT may decrement although no read operation has occurred.

• WR_DATA_COUNT may not increment as expected due to a write operation.

Note: During reset, WR_DATA_COUNT and DATA_COUNT value is set to 0.

Table 4-5: Empty FIFO WR_DATA_COUNT/DATA_COUNT Value

Write Depth to
Read Depth Ratio

Approximate
WR_DATA_COUNT

More Accurate
WR_DATA_COUNT

More Accurate
DATA_COUNT

1:1 0 2 2

1:2 0 1 N/A

1:4 0 0 N/A

1:8 0 0 N/A

2:1 0 4 N/A

http://www.xilinx.com

66 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

The RD_DATA_COUNT value at empty (when no write is performed) is 0 with or without
Use Extra Logic for all write depth to read depth ratios.

Example Operation

Figure 4-16 shows write and read data counts. When WR_EN is asserted and FULL is
deasserted, WR_DATA_COUNT increments. Similarly, when RD_EN is asserted and EMPTY is
deasserted, RD_DATA_COUNT decrements.

Note: In the first part of Figure 4-16, a successful write operation occurs on the third rising
clock edge, and is not reflected on WR_DATA_COUNT until the next full clock cycle is
complete. Similarly, RD_DATA_COUNT transitions one full clock cycle after a successful
read operation.

Non-symmetric Aspect Ratios
Table 4-6 identifies support for non-symmetric aspect ratios.

4:1 0 8 N/A

8:1 0 16 N/A

Table 4-5: Empty FIFO WR_DATA_COUNT/DATA_COUNT Value (Cont’d)

Write Depth to
Read Depth Ratio

Approximate
WR_DATA_COUNT

More Accurate
WR_DATA_COUNT

More Accurate
DATA_COUNT

X-Ref Target - Figure 4-16

Figure 4-16: Write and Read Data Counts for FIFO with Independent Clocks

WR_CLK

WR_DATA_COUNT

WR_EN

12 1413 15

RD_CLK

RD_DATA_COUNT

RD_EN

3 12 0

FULL

EMPTY

Write Interface

Read Interface

Table 4-6: Implementation-specific Support for Non-symmetric Aspect Ratios

FIFO Implementation
Non-symmetric Aspect

Ratios Support

Independent Clocks

Block RAM

Distributed RAM

Built-in

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 67
UG175 April 19, 2010

FIFO Usage and Control

This feature is supported for FIFOs configured with independent clocks implemented with
block RAM. Non-symmetric aspect ratios allow the input and output depths of the FIFO to
be different. The following write-to-read aspect ratios are supported: 1:8, 1:4, 1:2, 1:1, 2:1,
4:1, 8:1. This feature is enabled by selecting unique write and read widths when
customizing the FIFO using the CORE Generator. By default, the write and read widths are
set to the same value (providing a 1:1 aspect ratio); but any ratio between 1:8 to 8:1 is
supported, and the output depth of the FIFO is automatically calculated from the input
depth and the write and read widths.

For non-symmetric aspect ratios, the full and empty flags are active only when one
complete word can be written or read. The FIFO does not allow partial words to be
accessed. For example, assuming a full FIFO, if the write width is 8 bits and read width is
2 bits, the user would have to complete four valid read operations before full deasserts and
a write operation accepted. Write data count shows the number of FIFO words according
to the write port ratio, and read data count shows the number of FIFO words according to
the read port ratio.

Note: For non-symmetric aspect ratios where the write width is smaller than the read width (1:8, 1:4,
1:2), the most significant bits are read first (refer to Figure 4-17 and Figure 4-18).

Figure 4-17 is an example of a FIFO with a 1:4 aspect ratio (write width = 2, read width = 8).
In this figure, four consecutive write operations are performed before a read operation can
be performed. The first write operation is 01, followed by 00, 11, and finally 10. The
memory is filling up from the left to the right (MSB to LSB). When a read operation is
performed, the received data is 01_00_11_10.

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in

X-Ref Target - Figure 4-17

Figure 4-17: 1:4 Aspect Ratio: Data Ordering

Table 4-6: Implementation-specific Support for Non-symmetric Aspect Ratios

FIFO Implementation
Non-symmetric Aspect

Ratios Support

Read
Operation

110001

0001

01

MSB LSB

01 00 11 1001

00

11

10

Time

Write
Operation

10110001

http://www.xilinx.com

68 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Figure 4-18 shows DIN, DOUT and the handshaking signals for a FIFO with a 1:4 aspect
ratio. After four words are written into the FIFO, EMPTY is deasserted. Then after a single
read operation, EMPTY is asserted again.

Figure 4-19 shows a FIFO with an aspect ratio of 4:1 (write width of 8, read width of 2). In
this example, a single write operation is performed, after which four read operations are
executed. The write operation is 11_00_01_11. When a read operation is performed, the
data is received left to right (MSB to LSB). As shown, the first read results in data of 11,
followed by 00, 01, and then 11.

X-Ref Target - Figure 4-18

Figure 4-18: 1:4 Aspect Ratio: Status Flag Behavior

X-Ref Target - Figure 4-19

Figure 4-19: 4:1 Aspect Ratio: Data Ordering

WR_CLK

DIN[1:0]

WR_EN

231 0

RD_CLK

DOUT[7:0]

RD_EN

EMPTY

4E

Read
Operation

00 01 11

01 11

11

MSB LSB

Write
Operation

11 00 01 11 11

00

01

11

Time

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 69
UG175 April 19, 2010

FIFO Usage and Control

Figure 4-20 shows DIN, DOUT, and the handshaking signals for a FIFO with an aspect ratio
of 4:1. After a single write, the FIFO deasserts EMPTY. Because no other writes occur, the
FIFO reasserts empty after four reads.

Non-symmetric Aspect Ratio and First-Word Fall-Through

A FWFT FIFO has 2 extra read words available on the read port when compared to a
standard FIFO. For write-to-read aspect ratios that are larger or equal to 1 (1:1, 2:1, 4:1, and
8:1), the FWFT implementation also increases the number of words that can be written into
the FIFO by depth_ratio*2 (depth_ratio = write depth / read depth). For write-to-read
aspect ratios smaller than 1 (1:2, 1:4 and 1:8), the addition of 2 extra read words only
amounts to a fraction of 1 write word. The creation of these partial words causes the
behavior of the PROG_EMPTY and WR_DATA_COUNT signals of the FIFO to differ in
behavior than as previously described.

Programmable Empty

In general, PROG_EMPTY is guaranteed to assert when the number of readable words in the
FIFO is less than or equal to the programmable empty assert threshold. However, when the
write-to-read aspect ratios are smaller than 1 (depending on the read and write clock
frequency) it is possible for PROG_EMPTY to violate this rule, but only while EMPTY is
asserted. To avoid this condition, the user should set the programmable empty assert
threshold to 3*depth_ratio*frequency_ratio (depth_ratio = write depth/read depth and
frequency_ratio = write clock frequency / read clock frequency). If the programmable
empty assert threshold is set lower than this value, the user should assume that
PROG_EMPTY may or can be asserted when EMPTY is asserted.

Write Data Count

In general, WR_DATA_COUNT pessimistically reports the number of words written into the
FIFO and is guaranteed to never under-report the number of words in the FIFO, to ensure
that the user never overflows the FIFO. However, when the write-to-read aspect ratios are
smaller than 1, if the read and write operations result in partial write words existing in the
FIFO, it is possible to under-report the number of words in the FIFO. This behavior is most
crucial when the FIFO is 1 or 2 words away from full, because in this state the
WR_DATA_COUNT is under-reporting and cannot be used to gauge if the FIFO is full. In this
configuration, you should use the FULL flag to gate any write operation to the FIFO.

X-Ref Target - Figure 4-20

Figure 4-20: 4:1 Aspect Ratio: Status Flag Behavior

WR_CLK

DIN[7:0]

WR_EN

C7

RD_CLK

DOUT[1:0]

RD_EN

EMPTY

3103

http://www.xilinx.com

70 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Embedded Registers in Block RAM and FIFO Macros
(Virtex-6, Virtex-5 and Virtex-4 FPGAs)

The block RAM macros available in Virtex-6, Virtex-5 and Virtex-4 FPGA, as well as built-
in FIFO macros available in Virtex-6 and Virtex-5 FPGA, have built-in embedded registers
that can be used to pipeline data and improve macro timing. Depending on the
configuration, this feature can be leveraged to add one additional latency to the FIFO core
(DOUT bus and VALID outputs) or implement the output registers for FWFT FIFOs. For
built-in FIFOs configuration, this feature is only available for common clock FIFOs.

Standard FIFOs

When using the embedded registers to add an output pipeline register to the standard
FIFOs, only the DOUT and VALID output ports are delayed by 1 clock cycle during a read
operation. These additional pipeline registers are always enabled, as illustrated in
Figure 4-21.

Block RAM Based FWFT FIFOs

When using the embedded output registers to implement the FWFT FIFOs, the behavior of
the core is identical to the implementation without the embedded registers.

Built-in Based FWFT FIFOs (Common Clock Only)

When using the embedded output registers with a common clock built-in based FIFO with
FWFT, the embedded registers add an output pipeline register to the FWFT FIFO. The
DOUT and VALID output ports are delayed by 1 clock cycle during a read operation.
These pipeline registers are always enabled, and the DOUT reset value feature is not
supported in Virtex-4 and Virtex-5 FPGAs, as illustrated in Figure 4-22. For this
configuration, the embedded output register feature is only available for FIFOs that use
only 1 FIFO macro in depth.

X-Ref Target - Figure 4-21

Figure 4-21: Standard Read Operation for a Block RAM or built-in FIFO
with Use Embedded Registers Enabled

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 71
UG175 April 19, 2010

FIFO Usage and Control

Note: Virtex-5 FPGA built-in FIFOs with independent clocks and FWFT always use the
embedded output registers in the macro to implement the FWFT registers.

When using the embedded output registers with a common clock built-in FIFO in Virtex-6
FPGAs, the DOUT reset value feature is supported, as illustrated in Figure 4-23.

Built-in Error Correction Checking
Built-in ECC is supported for FIFOs configured with independent or common clock block
RAM and built-in FIFOs targeting Virtex-5 and Virtex-6 FPGAs. In addition, error injection
is supported for FIFOs configured with independent or common clock block RAM and
built-in FIFOs targeting Virtex-6 FPGAs. When ECC is enabled, the block RAM and built-
in FIFO primitive used to create the FIFO is configured in the full ECC mode (both encoder
and decoder enabled), providing two additional outputs to the FIFO Generator core:
SBITERR and DBITERR. These outputs indicate three possible read results: no error, single
error corrected, and double error detected. In the full ECC mode, the read operation does
not correct the single error in the memory array, it only presents corrected data on DOUT.

Figure 4-24 shows how the SBITERR and DBITERR outputs are generated in the FIFO
Generator core. The output signals are created by combining all the SBITERR and
DBITERR signals from the FIFO or block RAM primitives using an OR gate. Because the
FIFO primitives may be cascaded in depth, when SBITERR or DBITERR is asserted, the
error may have occurred in any of the built-in FIFO macros chained in depth or block RAM
macros. For this reason, these flags are not correlated to the data currently being read from
the FIFO Generator core or to a read operation. For this reason, when the DBITERR is
flagged, the user should assume that the data in the entire FIFO has been corrupted and the
user logic needs to take the appropriate action. As an example, when DBITERR is flagged,
an appropriate action for the user logic is to halt all FIFO operation, reset the FIFO, and
restart the data transfer.

X-Ref Target - Figure 4-22

Figure 4-22: FWFT Read Operation for a Synchronous Built-in
FIFO with User Embedded Registers Enabled

X-Ref Target - Figure 4-23

Figure 4-23: DOUT Reset Value for Virtex-6 Common Clock Built-in FIFO
Embedded Register

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D2 D3 D4

ALMOST_EMPTY

D1D0 D3

CLK

RST

DOUT Previous value DOUT reset value

http://www.xilinx.com

72 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

The SBITERR and DBITERR outputs are not registered and are generated combinatorially.
If the configured FIFO uses two independent read and write clocks, the SBITERR and
DBITERR outputs may be generated from either the write or read clock domain. The
signals generated in the write clock domain are synchronized before being combined with
the SBITERR and DBITERR signals generated in the read clock domain.

Note that due to the differing read and write clock frequencies and the OR gate used to
combine the signals, the number of read clock cycles that the SBITERR and DBITERR flags
assert is not an accurate indicator of the number of errors found in the built-in FIFOs.

Built-in Error Injection
Built-in Error Injection is supported for FIFOs configured with independent or common
clock block RAM and built-in FIFOs in Virtex-6 FPGAs. When ECC and Error Injection are
enabled, the block RAM and built-in FIFO primitive used to create the FIFO is configured
in the full ECC error injection mode, providing two additional inputs to the FIFO
Generator core: INJECTSBITERR and INJECTDBITERR. These inputs indicate three
possible results: no error injection, single bit error injection, or double bit error injection.

The ECC is calculated on a 64-bit wide data of Virtex-6 ECC primitive. If the data width
chosen by the user is not an integral multiple of 64 (for example, there are spare bits in any
ECC primitive), then a double bit error (DBITERR) may indicate that one or more errors
have occurred in the spare bits. So, the accuracy of the DBITERR signal cannot be
guaranteed in this case. For example, if the user's data width is 16, then 48 bits of the ECC
primitive are left empty. If two of the spare bits are corrupted, the DBITERR signal would
be asserted even though the actual user data is not corrupt.

X-Ref Target - Figure 4-24

Figure 4-24: SBITERR and DBITERR Outputs in the FIFO Generator Core

Write Domain Read Domain

WR_EN

DIN

WR_ACK

OVERFLOW

FULL EMPTY

RD_EN

DOUT

UNDERFLOW

VALID

PROG_FULL PROG_EMPTY

DOUT

Cascaded Built-in FIFO Primitives

DIN

WE RE
Built-in FIFO/
block RAM

SBITERR

DBITERR

Logic for Optional
Flags: Write Domain

Logic for Optional
Flags: Read Domain

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 73
UG175 April 19, 2010

FIFO Usage and Control

When INJECTSBITERR is asserted on a write operation, a single bit error is injected and
SBITERR is asserted upon read operation of a specific write. When INJECTDBITERR is
asserted on a write operation, a double bit error is injected and DBITERR is asserted upon
read operation of a specific write. When both INJECTSBITERR and INJECTDBITERR are
asserted on a write operation, a double bit error is injected and DBITERR is asserted upon
read operation of a specific write. Figure 4-25 shows how the SBITERR and DBITERR
outputs are generated in the FIFO Generator core.

Note: Reset is not supported by the FIFO/BRAM macros when using the ECC option. Therefore,
outputs of the FIFO core (DOUT, DBITERR and SBITERR) will not be affected by reset, and they hold
their previous values. See “Reset Behavior” for more details.

Reset Behavior
The FIFO Generator provides a reset input that resets all counters, output registers, and
memories when asserted. For block RAM or distributed RAM implementations, resetting
the FIFO is not required, and the reset pin can be disabled in the FIFO. There are two reset
options: asynchronous and synchronous.

Asynchronous Reset (Enable Reset Synchronization Option is Selected)

The asynchronous reset (RST) input asynchronously resets all counters, output registers,
and memories when asserted. When reset is implemented, it is synchronized internally to
the core with each respective clock domain for setting the internal logic of the FIFO to a
known state. This synchronization logic allows for proper timing of the reset logic within
the core to avoid glitches and metastable behavior.

Common/Independent Clock: Block RAM, Distributed RAM, and Shift RAM FIFOs

Table 4-7 defines the values of the output ports during power-up and reset state for block
RAM, distributed RAM, and shift RAM FIFOs. Note that the underflow signal is
dependent on RD_EN. If RD_EN is asserted and the FIFO is empty, underflow is asserted.
The overflow signal is dependent on WR_EN. If WE_EN is asserted and the FIFO is full,
overflow is asserted.

X-Ref Target - Figure 4-25

Figure 4-25: Error Injection and Correction in Virtex-6 FPGA

WR_EN

D0 D1 D2 D3 D4

D0 D1 D2x D3 D4xDOUT

DIN

RD_EN

INJECTSBITERR

INJECTDBITERR

SBITERR

DBITERR

Corrupted
and

Corrected
Data

Corrupted
Data

Corrupted
Data

http://www.xilinx.com

74 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

There are two asynchronous reset behaviors available for these FIFO configurations: Full
flags reset to 1 and full flags reset to 0. The reset requirements and the behavior of the FIFO
is different depending on the full flags reset value chosen.

Note: The reset is edge sensitive and not level sensitive. The synchronization logic looks for the
rising edge of RST and creates an internal reset for the core. Note that the assertion of asynchronous
reset immediately causes the core to go into a predetermine reset state - this is not dependent on any
clock toggling. The reset synchronization logic is used to ensure that the logic in the different clock
domains comes OUT of the reset mode at the same time - this is by synchronizing the deassertion of
asynchronous reset to the appropriate clock domain. By doing this glitches and metastability can be
avoided. This synchronization takes three clock cycles (write or read) after the asynchronous reset is
detected on the rising edge read and write clock respectively. To avoid unexpected behavior, it is not
recommended to drive/toggle WR_EN/RD_EN when RST or FULL is asserted/high.

Full Flags Reset Value of 1

In this configuration, the FIFO requires a minimum asynchronous reset pulse of 1 write
clock period (WR_CLK/CLK). After reset is detected on the rising clock edge of write clock,
3 write clock periods are required to complete proper reset synchronization. During this
time, the FULL, ALMOST_FULL, and PROG_FULL flags are asserted. After reset is
deasserted, these flags deassert after 3 clock period (WR_CLK/CLK) and the FIFO is now
ready for writing.

The FULL and ALMOST_FULL flags are asserted to ensure that no write operations occur
when the FIFO core is in the reset state. After the FIFO exits the reset state and is ready for
writing, the FULL and ALMOST_FULL flags deassert; this occurs approximately three clock
cycles after the deassertion of asynchronous reset. See Figure 4-26 and Figure 4-27 for

Table 4-7: FIFO Asynchronous Reset Values for Block RAM, Distributed RAM,
and Shift RAM FIFOs

Signal
Full Flags Reset

Value of 1
Full Flags Reset

Value of 0
Power-up

Values

DOUT DOUT Reset Value or
0

DOUT Reset
Value or 0

Same as reset
values

FULL 1(1) 0 0

ALMOST FULL 1(1) 0 0

EMPTY 1 1 1

ALMOST EMPTY 1 1 1

VALID 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

WR_ACK 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

PROG_FULL 1(1) 0 0

PROG_EMPTY 1 1 1

RD_DATA_COUNT 0 0 0

WR_DATA_COUNT 0 0 0

Notes:
1. When reset is asserted, the FULL flags are asserted to prevent writes to the FIFO during reset.

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 75
UG175 April 19, 2010

FIFO Usage and Control

example behaviors. Note that the power-up values for this configuration are different from
the reset state value.

Figure 4-26 shows an example timing diagram for when the reset pulse is one clock
duration.

Figure 4-27 shows an example timing diagram for when the reset pulse is longer than one
clock duration.

Full Flags Reset Value of 0

In this configuration, the FIFO requires a minimum asynchronous reset pulse of 1 write
clock cycle to complete the proper reset synchronization. At reset, FULL, ALMOST_FULL
and PROG_FULL flags are deasserted. After the FIFO exits the reset synchronization state,
the FIFO is ready for writing; this occurs approximately three clock cycles after the
assertion of asynchronous reset. See Figure 4-28 for example behavior.

X-Ref Target - Figure 4-26

Figure 4-26: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 1 for the Reset Pulse of One Clock

X-Ref Target - Figure 4-27

Figure 4-27: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 1 for the Reset Pulse of More Than One Clock

ALMOST_FULL

WR_CLK

FULL

PROG_FULL

In Reset State Out of Reset State

RST

Write domain in reset state Write domain out of reset state

WR_EN

WR_ACK

VALID

RD_CLK

Read domain out of reset state

Read domain in
reset state

RD_EN

ALMOST_FULL

WR_CLK

FULL

PROG_FULL

No Write Zone

RST

http://www.xilinx.com

76 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Common/Independent Clock: Built-in

Table 4-7 defines the values of the output ports during power-up and reset state for Built-
in FIFOs. DOUT reset value is not supported for Virtex-4, Virtex-5, and Virtex-6 Built-in
FIFOs, except Virtex-6 common clock Built-in FIFOs with embedded register option
selected. The Built-In FIFOs require an asynchronous reset pulse of at least 3 read and write
clock cycles. During reset, the RD_EN and WR_EN ports are required to be deasserted (no
read or write operation can be performed). Assertion of reset causes the FULL and
PROG_FULL flags to deassert and EMPTY and PROG_EMPTY flags to assert. After
asynchronous reset is released, the core exits the reset state and is ready for writing. See
Figure 4-29 for example behavior.

Note that the underflow signal is dependent on RD_EN. If RD_EN is asserted and the FIFO
is empty, underflow is asserted. The overflow signal is dependent on WR_EN. If WE_EN is
asserted and the FIFO is full, overflow is asserted.

X-Ref Target - Figure 4-28

Figure 4-28: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 0

WR_CLK

RST

FULL

ALMOST_FULL

PROG_FULL

In Reset state Out of Reset state

Write domain in reset state Write domain out of reset state

WR_EN

WR_ACK

VALID

RD_CLK

Read domain out of reset state

Read domain in
reset state

RD_EN

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 77
UG175 April 19, 2010

FIFO Usage and Control

Synchronous Reset

The synchronous reset input (SRST or WR_RST/RD_RST synchronous to
WR_CLK/RD_CLK domain) is only available for the block RAM, distributed RAM, or
shift RAM implementation of the common/independent clock FIFOs.

Common Clock Block, Distributed, or Shift RAM FIFOs

The synchronous reset (SRST) synchronously resets all counters, output registers and
memories when asserted. Because the reset pin is synchronous to the input clock and there

Table 4-8: Asynchronous FIFO Reset Values for Built-in FIFO

Signal Built-in FIFO Reset Values
Power-up

Values

DOUT Last read value Content of memory at location
0

FULL 0 0

EMPTY 1 1

VALID 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

PROG_FULL 0 0

PROG_EMPTY 1 1

X-Ref Target - Figure 4-29

Figure 4-29: Built-in FIFO, Asynchronous Reset Behavior

CLK

RST

FULL

PRG_FULL

EMPTY

PROG_EMPTY

http://www.xilinx.com

78 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

is only one clock domain in the FIFO, no additional synchronization logic is necessary.
Figure 4-32 illustrates the flags following the release of SRST.

Independent Clock Block and Distributed RAM FIFOs (Enable Reset
Synchronization Option not Selected)

The synchronous reset (WR_RST/RD_RST) synchronously resets all counters, output
registers of respective clock domain when asserted. Because the reset pin is synchronous to
the respective clock domain, no additional synchronization logic is necessary.

If one reset (WR_RST/RD_RST) is asserted, the other reset must also be applied. The time
at which the resets are asserted/de-asserted may differ, and during this period the FIFO
outputs become invalid. To avoid unexpected behavior, it is not recommended to perform
write or read operations from the assertion of the first reset to the de-assertion of the last
reset.

Note: For the FIFOs built with First-Word-Fall-Through and ECC configurations, the SBITERR and
DBITERR may be high until a valid read is performed after the de-assertion of both WR_RST and
RD_RST.

X-Ref Target - Figure 4-30X-Ref Target - Figure 4-31X-Ref Target - Figure 4-32

Figure 4-32: Synchronous Reset: FIFO with a Common Clock

CLK

SRST

FULL

ALMOST_FULL

PROG_FULL

In Reset state Out of Reset state

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 79
UG175 April 19, 2010

FIFO Usage and Control

Figure 4-33 and Figure 4-34 illustrate the rules to be considered.
X-Ref Target - Figure 4-33

Figure 4-33: Synchronous Reset: FIFO with Independent Clock -
WR_RST then RD_RST

WR_CLK

WR_RST

1 2 3 4 5 6

wr_en will not have any effect

RD_CLK

RD_RST

1 2 3 4 5 6 7 8

rd_en will not have any effect

No Write/Read Operation

WR_CLK

WR_RST

1 2 3 4 5 6

wr_en will not have any effect

RD_CLK

RD_RST

1 2 3 4 5 6 7 8

rd_en will not have
any effect

No Write/Read Operation

http://www.xilinx.com

80 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Table 4-9 defines the values of the output ports during power-up and the reset state. If the
user does not specify a DOUT reset value, it defaults to 0. The FIFO requires a reset pulse
of only 1 clock cycle. The FIFOs are available for transaction on the clock cycle after the
reset is released. The power-up values for the synchronous reset are the same as the reset
state.

Note that the underflow signal is dependent on RD_EN. If RD_EN is asserted and the FIFO
is empty, underflow is asserted. The overflow signal is dependent on WR_EN. If WE_EN is
asserted and the FIFO is full, overflow is asserted.

X-Ref Target - Figure 4-34

Figure 4-34: Synchronous Reset: FIFO with Independent Clock -
RD_RST then WR_RST

Table 4-9: Synchronous FIFO Reset and Power-up Values

Signal
Block Memory and

Distributed Memory Values of
Output Ports During Reset and Power-up

DOUT DOUT Reset Value or 0

FULL 0

ALMOST FULL 0

EMPTY 1

ALMOST EMPTY 1

VALID 0 (active high) or 1 (active low)

RD_CLK

RD_RST

1 2 3 4 5 6

rd_en will not have any effect

WR_CLK

WR _RST

1 2 3 4 5 6 7 8

wr_en will not have any effect

No Write/Read Operation

RD_CLK

RD_RST

1 2 3 4 5 6

rd_en will not have any effect

WR_CLK

WR_RST

1 2 3 4 5 6 7 8

wr_en will not have
any effect

No Write/Read Operation

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 81
UG175 April 19, 2010

Actual FIFO Depth

Actual FIFO Depth
Of critical importance is the understanding that the effective or actual depth of a FIFO is not
necessarily consistent with the depth selected in the GUI, because the actual depth of the
FIFO depends on its implementation and the features that influence its implementation. In
the FIFO Generator GUI, the actual depth of the FIFO is reported: the following section
provides formulas or calculations used to report this information.

Block RAM, Distributed RAM and Shift RAM FIFOs
The actual FIFO depths for the block RAM, distributed RAM, and shift RAM FIFOs are
influenced by the following features that change its implementation:

• Common or Independent Clock

• Standard or FWFT Read Mode

• Symmetric or Non-symmetric Port Aspect Ratio

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

• Common Clock FIFO in Standard Read Mode

actual_write_depth = gui_write_depth

actual_read_depth = gui_read_depth

• Common Clock FIFO in FWFT Read Mode

actual_write_depth = gui_write_depth +2

actual_read_depth = gui_read_depth +2

• Independent Clock FIFO in Standard Read Mode

actual_write_depth = gui_write_depth - 1

actual_read_depth = gui_read_depth - 1

• Independent Clock FIFO in FWFT Read Mode

actual_write_depth = (gui_write_depth - 1) +
(2*round_down(gui_write_depth/gui_read_depth))

actual_read_depth = gui_read_depth + 1

Notes

1. Gui_write_depth = actual write (input) depth selected in the GUI

2. Gui_read_depth = actual read (output) depth selected in the GUI

3. Non-symmetric port aspect ratio feature (gui_write_depth not equal to
gui_read_depth) is only supported in block RAM based FIFOs.

WR_ACK 0 (active high) or 1 (active low)

PROG_FULL 0

PROG_EMPTY 0

RD_DATA_COUNT 0

WR_DATA_COUNT 0

Table 4-9: Synchronous FIFO Reset and Power-up Values (Cont’d)

http://www.xilinx.com

82 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Virtex-6 and Virtex-5 FPGA Built-In FIFOs
The actual FIFO depths for the Virtex-6 and Virtex-5 FPGA built-in FIFOs are influenced by
the following features, which change its implementation:

• Common or Independent Clock

• Standard or FWFT Read Mode

• Built-In FIFO primitive used in implementation (minimum depth is 512)

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

• Independent Clock FIFO in Standard Read Mode

actual_write_depth = (primitive_depth+2)*(N-1) + (primitive_depth+1)

• Independent Clock FIFO in FWFT Read Mode

actual_write_depth = (primitive_depth+2)*N

• Common Clock FIFO in Standard Read Mode

actual_write_depth = (primitive_depth+1)*(N-1) + primitive_depth

• Common Clock FIFO in FWFT Read Mode

actual_write_depth = (primitive_depth+1)*N

Notes

1. primitive_depth = depth of the primitive used to implement the FIFO; this information
is reported in the GUI

2. N = number of primitive cascaded in depth or roundup
(gui_write_depth/primitive_depth)

Virtex-4 FPGA Built-In FIFOs
The actual FIFO depths for the Virtex-4 FPGA Built-in FIFOs are influenced by the
following features, which change its implementation:

• Read and Write Clock Frequencies

• Built-In FIFO primitive used in implementation (minimum depth is 512)

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

• Common/Independent Clock FIFO in Standard Read Mode and RD_CLK frequency
> WR_CLK frequency

actual_write_depth = primitive_depth+17

• Common/Independent Clock FIFO in Standard Read Mode and RD_CLK frequency
<= WR_CLK frequency

actual_write_depth = primitive_depth+17

Note: primitive_depth = depth of the primitive used to implement the FIFO. For more
details, see UG070, Virtex-4 FPGA User Guide.

Latency
This section defines the latency in which different output signals of the FIFO are updated
in response to read or write operations.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

FIFO Generator v6.1 www.xilinx.com 83
UG175 April 19, 2010

Latency

Note: Latency is defined as the number of clock edges after a read or write operation occur
before the signal is updated. Example: if latency is 0, that means that the signal is updated
at the clock edge in which the operation occurred, as shown in Figure 4-35 in which
WR_ACK is getting updated in which WR_EN is high.

Non-Built-in FIFOs: Common Clock and Standard Read Mode
Implementations

Table 4-10 defines the write port flags update latency due to a write operation for non-
Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

Table 4-11 defines the read port flags update latency due to a read operation.

Table 4-12 defines the write port flags update latency due to a read operation.Table 4-13

X-Ref Target - Figure 4-35

Figure 4-35: Latency 0 Timing

CLK

WR_EN

WR_ACK

Table 4-10: Write Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 4-11: Read Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

DATA_COUNT 0

Table 4-12: Write Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

http://www.xilinx.com

84 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Table 4-13 defines the read port flags update latency due to a write operation.

Non-Built-in FIFOs: Common CLock and FWFT Read Mode
Implementations

Table 4-14 defines the write port flags update latency due to a write operation for non-
Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

Table 4-15 defines the read port flags update latency due to a read operation.

WR_ACKa N/A

OVERFLOWa N/A

a. Write handshaking signals are only impacted by a write operation.

Table 4-13: Read Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

DATA_COUNT 0

Table 4-12: Write Port Flags Update Latency Due to Read Operation (Cont’d)

Table 4-14: Write Port Flags Update Latency due to Write Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 4-15: Read Port Flags Update Latency due to Read Operation

Signals Latency (CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

DATA_COUNT 0

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 85
UG175 April 19, 2010

Latency

Table 4-16 defines the write port flags update latency due to a read operation.

Table 4-16: Write Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACKa

a. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWa N/A

http://www.xilinx.com

86 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Table 4-17 defines the read port flags update latency due to a write operation.

Non-Built-in FIFOs: Independent Clock and Standard Read Mode
Implementations

Table 4-18 defines the write port flags update latency due to a write operation.

Table 4-19 defines the read port flags update latency due to a read operation.

Table 4-20 defines the write port flags update latency due to a read operation.

Table 4-17: Read Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

EMPTY 2

ALMOST_EMPTY 1

PROG_EMPTY 1

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

DATA_COUNT 0

Table 4-18: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

WR_DATA_COUNT 1

Table 4-19: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

RD_DATA_COUNT 1

Table 4-20: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 87
UG175 April 19, 2010

Latency

Table 4-21 defines the read port flags update latency due to a write operation.

Non-Built-in FIFOs: Independent Clock and FWFT Read Mode
Implementations

Table 4-22 defines the write port flags update latency due to a write operation.

ALMOST_FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

PROG_FULL 1 RD_CLK + 5 WR_CLK (+1 WR_CLK)a

WR_ACKb N/A

OVERFLOWb N/A

WR_DATA_COUNT 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 WR_CLK uncertainty to the
latency calculation.

b. Write handshaking signals are only impacted by a write operation.

Table 4-21: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTY 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 RD_CLK uncertainty to the
latency calculation.

ALMOST_EMPTY 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a

PROG_EMPTY 1 WR_CLK + 5 RD_CLK (+1 RD_CLK)a

VALIDb

b. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWb N/A

RD_DATA_COUNT 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a

Note: Read handshaking signals only impacted by read operation.

Table 4-20: Write Port Flags Update Latency Due to a Read Operation

Table 4-22: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)

FULL 0

ALMOST_FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

WR_DATA_COUNT 1

http://www.xilinx.com

88 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Table 4-23 defines the read port flags update latency due to a read operation.

Table 4-24 defines the write port flags update latency due to a read operation.

Table 4-25 defines the read port flags update latency due to a write operation.

Table 4-23: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

ALMOST_EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

RD_DATA_COUNT 1

Table 4-24: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 WR_CLK uncertainty to the
latency calculation.

ALMOST_FULL 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

PROG_FULL 1 RD_CLK + 5 WR_CLK (+1 WR_CLK)a

WR_ACKb

b. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWb N/A

WR_DATA_COUNT 1 RD_CLK + 4 WR_CLK (+1 WR_CLK)a

Table 4-25: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTY 1 WR_CLK + 6 RD_CLK (+1 RD_CLK)a

a. The crossing clock domain logic in independent clock FIFOs introduces a 1 RD_CLK uncertainty to the
latency calculation.

ALMOST_EMPTY 1 WR_CLK + 6 RD_CLK (+1 RD_CLK)a

PROG_EMPTY 1 WR_CLK + 5 RD_CLK (+1 RD_CLK)a

VALIDb

b. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWb N/A

RD_DATA_COUNT 1 WR_CLK + 4 RD_CLK (+1 RD_CLK)a
+ [2 RD_CLK (+1 RD_CLK)]c

c. This latency is the worst-case latency. The addition of the [2 RD_CLK (+1 RD_CLK)] latency depends
on the status of the EMPTY and ALMOST_EMPTY flags.

Note: Read handshaking signals only impacted by read operation.

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 89
UG175 April 19, 2010

Latency

Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Common Clock and Standard
Read Mode Implementations

Note: N is the number of primitives cascaded in depth; this can be calculated by dividing
the GUI depth by the primitive depth.

Table 4-26 defines the write port flags update latency due to a write operation.

Table 4-27 defines the read port flags update latency due to a read operation.

Table 4-28 defines the write port flags update latency due to a read operation.

Table 4-26: Write Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 4-27: Read Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

Table 4-28: Write Port Flags Update Latency Due to Read Operation

Signals Latency (CLK)

FULL (N-1)

PROG_FULL N

WR_ACKa

a. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWa N/A

http://www.xilinx.com

90 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Table 4-29 defines the read port flags update latency due to a write operation.

Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Common Clock and FWFT
Read Mode Implementations

Note: N is the number of primitives cascaded in depth; this can be calculated by dividing
the GUI depth by the primitive depth.

Table 4-30 defines the write port flags update latency due to a write operation.

Table 4-31 defines the read port flags update latency due to a read operation.

Table 4-32 defines the write port flags update latency due to a read operation.

Table 4-29: Read Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

EMPTY (N-1)*2

PROG_EMPTY (N-1)*2+1

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

Note: Read handshaking signals only impacted by read operation.

Table 4-30: Write Port Flags Update Latency Due to Write Operation

Signals Latency (CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

Table 4-31: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

Table 4-32: Write Port Flags Update Latency Due to a Read Operation

Signals Latency (CLK)

FULL (N-1)

PROG_FULLa N

WR_ACKa N/A

OVERFLOW N/A

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 91
UG175 April 19, 2010

Latency

Table 4-33 defines the read port flags update latency due to a write operation

Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Independent Clocks and
Standard Read Mode Implementations

Note: N is the number of primitives cascaded in depth; this can be calculated by dividing
the GUI depth by the primitive depth. Faster_Clk is the clock domain, either RD_CLK or
WR_CLK, that has a larger frequency.

Table 4-34 defines the write port flags update latency due to a write operation.

a. Write handshaking signals are only impacted by a write operation.

Table 4-33: Read Port Flags Update Latency Due to a Write Operation

Signals Latency (CLK)

EMPTY ((N-1)*2+1)

PROG_EMPTY ((N-1)*2+1)

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

Table 4-34: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (WR_CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

http://www.xilinx.com

92 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

Table 4-35 defines the read port flags update latency due to a read operation.

Table 4-36 defines the write port flags update latency due to a read operation.

Table 4-37 defines the read port flags update latency due to a write operation.

Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Independent Clocks and
FWFT Read Mode Implementations

Note: N is the number of primitives cascaded in depth, which can be calculated by
dividing the GUI depth by the primitive depth. Faster_Clk is the clock domain, either
RD_CLK or WR_CLK, that has a larger frequency.

Table 4-38 defines the write port flags update latency due to a write operation.

Table 4-35: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

Table 4-36: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULL (N-1)*5 faster_clk + 4 WR_CLK

PROG_FULL (N-1)*4 faster_clk + 3 WR_CLK

WR_ACKa

a. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWa N/A

Table 4-37: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTY (N-1)*5 faster_clk + 3 RD_CLK

PROG_EMPTY (N-1)*4 faster_clk + 3 RD_CLK

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

Table 4-38: Write Port Flags Update Latency Due to a Write Operations

Signals Latency (WR_CLK)

FULL 0

PROG_FULL 1

WR_ACK 0

OVERFLOW 0

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 93
UG175 April 19, 2010

Latency

Table 4-39 defines the read port flags update latency due to a read operation.

Table 4-40 defines the write port flags update latency due to a read operation.

Table 4-41 defines the read port flags update latency due to a write operation.

Virtex-4 FPGA Built-in FIFO
The Virtex-4 FPGA supports only one Built-in FIFO with a data width of 4, 9, 18 or 36. For
more details for the write and read port flags update latency, see UG070, Virtex-4 FPGA
User Guide.

Table 4-39: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (RD_CLK)

EMPTY 0

PROG_EMPTY 1

VALID 0

UNDERFLOW 0

Table 4-40: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

FULL (N-1)*5 faster_clk + 4 WR_CLK

PROG_FULL (N-1)*4 faster_clk + 3 WR_CLK

WR_ACKa

a. Write handshaking signals are only impacted by a write operation.

N/A

OVERFLOWa N/A

Table 4-41: Read Port Flags Update Latency Due to a Write Operation

Signals Latency

EMPTY (N-1)*5 faster_clk + 4 RD_CLK

PROG_EMPTY (N-1)*4 faster_clk + 3 RD_CLK

VALIDa

a. Read handshaking signals are only impacted by a read operation.

N/A

UNDERFLOWa N/A

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

94 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 4: Designing with the Core

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 95
UG175 April 19, 2010

Chapter 5

Special Design Considerations

This chapter provides additional design considerations for using the FIFO Generator core.

Resetting the FIFO
The FIFO Generator must be reset after the FPGA is configured and before operation
begins. Two reset pins are available, asynchronous (RST) and synchronous (SRST), and
both clear the internal counters and output registers.

• For asynchronous reset, internal to the core, RST is synchronized to the clock domain
in which it is used, to ensure that the FIFO initializes to a known state. This
synchronization logic allows for proper reset timing of the core logic, avoiding
glitches and metastable behavior. To avoid unexpected behavior, it is not
recommended to drive/toggle WR_EN/RD_EN when RST is asserted/high .

• For common clock block and distributed RAM synchronous reset, because the reset
pin is synchronous to the input clock and there is only one clock domain in the FIFO,
no additional synchronization logic is needed.

• For independent clock block and distributed RAM synchronous reset, because the
reset pin (WR_RST/RD_RST) is synchronous to the respective clock domain, no
additional synchronization logic is needed. However, it is recommended to follow
these rules to avoid unexpected behavior:

♦ If WR_RST is applied, then RD_RST must also be applied and vice versa.

♦ No write or read operations should be performed until both clock domains are
reset.

The generated FIFO core will be initialized after reset to a known state. For details about
reset values and behavior, see “Reset Behavior” in Chapter 4 of this guide.

Continuous Clocks
The FIFO Generator is designed to work only with free-running write and read clocks.
Xilinx does not recommend controlling the core by manipulating RD_CLK and WR_CLK. If
this functionality is required to gate FIFO operation, we recommend using the write enable
(WR_EN) and read enable (RD_EN) signals.

Pessimistic Full and Empty
When independent clock domains are selected, the full flag (FULL, ALMOST_FULL) and
empty flag (EMPTY, ALMOST_EMPTY) are pessimistic flags. FULL and ALMOST_FULL are
synchronous to the write clock (WR_CLK) domain, while EMPTY and ALMOST_EMPTY are
synchronous to the read clock (RD_CLK) domain.

http://www.xilinx.com

96 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 5: Special Design Considerations

The full flags are considered pessimistic flags because they assume that no read operations
have taken place in the read clock domain. ALMOST_FULL is guaranteed to be asserted on
the rising edge of WR_CLK when there is only one available location in the FIFO, and FULL
is guaranteed to be asserted on the rising edge of WR_CLK when the FIFO is full. There may
be a number of clock cycles between a read operation and the deassertion of FULL. The
precise number of clock cycles for FULL to deassert is not predictable due to the crossing of
clock domains and synchronization logic. For more information see “Simultaneous
Assertion of Full and Empty Flag.”

The EMPTY flags are considered pessimistic flags because they assume that no write
operations have taken place in the write clock domain. ALMOST_EMPTY is guaranteed to be
asserted on the rising edge of RD_CLK when there is only one more word in the FIFO, and
EMPTY is guaranteed to be asserted on the rising edge of RD_CLK when the FIFO is empty.
There may be a number of clock cycles between a write operation and the deassertion of
EMPTY. The precise number of clock cycles for EMPTY to deassert is not predictable due to
the crossing of clock domains and synchronization logic. For more information see
“Simultaneous Assertion of Full and Empty Flag.”

See Chapter 4, “Designing with the Core,” for detailed information about the latency and
behavior of the full and empty flags.

Programmable Full and Empty
The programmable full (PROG_FULL) and programmable empty (PROG_EMPTY) flags
provide the user flexibility in specifying when the programmable flags assert and deassert.
These flags can be set either by constant value(s) or by input port(s). These signals differ
from the full and empty flags because they assert one (or more) clock cycle after the assert
threshold has been reached. These signals are deasserted some time after the negate
threshold has been passed. In this way, PROG_EMPTY and PROG_FULL are also considered
pessimistic flags. See “Programmable Flags” in Chapter 4 of this guide for more
information about the latency and behavior of the programmable flags.

Simultaneous Assertion of Full and Empty Flag
For independent clock FIFO, there are delays in the assertion/deassertion of the full and
empty flags due to cross clock domain logic. These delays may cause unexpected FIFO
behavior like full and empty asserting at the same time. To avoid this, the following A and
B equations must be true.

A) Time it takes to update full flag due to read operation < time it takes to empty a full
FIFO

B) Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

For example, assume the following configurations:

Independent clock (non built-in), standard FIFO

write clock frequency = 3MHz, wr_clk_period = 333 ns

read clock frequency = 148 MHz, rd_clk_period = 6.75 ns

write depth = read depth = 20

actual_wr_depth = actual_rd_depth = 19 (as mentioned in “Actual FIFO Depth” in
Chapter 4)

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 97
UG175 April 19, 2010

Write Data Count and Read Data Count

Apply equation A:

Time it takes to update full flag due to read operation < time it takes to empty a full FIFO
= 1*rd_clk_period + 5*wr_clk_period < actual_rd_depth*rd_clk_period

1*6.75 + 5*333 < 19*6.75

1671.75 ns < 128.5 ns --> Equation VIOLATED!

Note: Left side equation is the latency of full flag updating due to read operation as mentioned in
Table 4-20.

Conclusion: Violation of this equation proves that for this design, when a FULL FIFO is
read from continuously, the empty flag asserts before the full flag deasserts due to the read
operations that occurred.

Apply Equation B:

Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

1*wr_clk_period + 5*rd_clk_period < actual_wr_depth*wr_clk_period

1*333 + 5*6.75 < 19*333

366.75 ns < 6327 ns --> Equation MET!

Note: Left side equation is the latency of empty flag updating due to write operation as mentioned
in Table 4-21.

Conclusion: Because this equation is met for this design, an EMPTY FIFO that is written
into continuously has its empty flag deassert before the full flag is asserted.

Write Data Count and Read Data Count
When independent clock domains are selected, write data count (WR_DATA_COUNT) and
read data count (RD_DATA_COUNT) signals are provided as an indication of the number of
words in the FIFO relative to the write or read clock domains, respectively.

Consider the following when using the WR_DATA_COUNT or RD_DATA_COUNT ports.

• The WR_DATA_COUNT and RD_DATA_COUNT outputs are not an instantaneous
representation of the number of words in the FIFO, but can instantaneously provide
an approximation of the number of words in the FIFO.

• WR_DATA_COUNT and RD_DATA_COUNT may skip values from clock cycle to clock
cycle.

• Using non-symmetric aspect ratios, or running clocks which vary dramatically in
frequency, will increase the disparity between the data count outputs and the actual
number of words in the FIFO.

Note: The WR_DATA_COUNT and RD_DATA_COUNT outputs will always be correct after some
period of time where RD_EN=0 and WR_EN=0 (generally, just a few clock cycles after read and write
activity stops).

See “Data Counts” in Chapter 4 of this guide for details about the latency and behavior of
the data count flags.

http://www.xilinx.com

98 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 5: Special Design Considerations

Setup and Hold Time Violations
When generating a FIFO with independent clock domains (whether a DCM is used to
derive the write/read clocks or not), the core internally synchronizes the write and read
clock domains. For this reason, setup and hold time violations are expected on certain
registers within the core. In simulation, warning messages may be issued indicating these
violations. If these warning messages are from the FIFO Generator core, they can be safely
ignored. The core is designed to properly handle these conditions, regardless of the phase
or frequency relationship between the write and read clocks.

Alternatively, there are two ways to disable these expected setup and hold time violations
due to data synchronization between clock domains:

• Add the following constraint to your design–this constraint sets a timing constraint to
the synchronization logic by requiring a maximum set of delays. The maximum
delays used is defined by 2x of the slower clock period.

NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/wr_pntr_gc<0> MAXDELAY = 12
ns;
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/wr_pntr_gc<1> MAXDELAY = 12
ns;
 ...
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/wr_pntr_gc<9> MAXDELAY = 12
ns;

NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/rd_pntr_gc<0> MAXDELAY = 12
ns;
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/rd_pntr_gc<1> MAXDELAY = 12
ns;
 ...
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/rd_pntr_gc<9> MAXDELAY = 12
ns;

• Add the following constraint to your design–this constraint directs the tool to ignore
the appropriate paths that are part of the synchronization logic:

NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/wr_pntr_gc<0> TIG;
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/wr_pntr_gc<1> TIG;
 ...
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/wr_pntr_gc<9> TIG;

NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/rd_pntr_gc<0> TIG;
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/rd_pntr_gc<1> TIG;
 ...
NET fifo_instance/BU2/U0/grf.rf/gcx.clkx/rd_pntr_gc<9> TIG;

• If distributed RAM FIFO is used, the following constraints may also be required to
improve the timing.

INST "fifo_instance/BU2/U0/grf.rf/mem/gdm.dm/Mram*" TNM= RAMSOURCE;
INST "fifo_instance/BU2/U0/grf.rf/mem/gdm.dm/dout*" TNM= FFDEST;
TIMESPEC TS_RAM_FF= FROM "RAMSOURCE" TO "FFDEST" <<one read clock
period>> DATAPATHONLY;

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 99
UG175 April 19, 2010

Chapter 6

Simulating Your Design

The FIFO Generator is provided as a Xilinx technology-specific netlist, and as a behavioral
or structural simulation model. This chapter provides instructions for simulating the FIFO
Generator in your design.

Simulation Models
The FIFO Generator supports two types of simulation models based on the Xilinx CORE
Generator system project options. The models are available in both VHDL and Verilog®.
Both types of models are described in detail in this chapter.

To choose a model:

1. Open the CORE Generator.

2. Select Options from the Project drop-down list.

3. Click the Generation tab.

4. Choose to generate a behavioral model or a structural model.

Behavioral Models

Important! The behavioral models provided do not model synchronization delay, and are
designed to reproduce the behavior and functionality of the FIFO Generator. The models
maintain the assertion/deassertion of the output signals to match the FIFO Generator.

The behavioral models are functionally correct, and will represent the behavior of the
configured FIFO. The write-to-read latency and the behavior of the status flags will
accurately match the actual implementation of the FIFO design.

To generate behavioral models, select Behavioral and VHDL or Verilog in the Xilinx CORE
Generator project options. Behavioral models are the default project options.

The following considerations apply to the behavioral models.

• Write operations always occur relative to the write clock (WR_CLK) or common clock
(CLK) domain, as do the corresponding handshaking signals.

• Read operations always occur relative to the read clock (RD_CLK) or common clock
(CLK) domain, as do the corresponding handshaking signals.

• The delay through the FIFO (write-to-read latency) will match the VHDL model,
Verilog model, and core.

• The deassertion of the status flags (full, almost full, programmable full, empty, almost
empty, programmable empty) will match the VHDL model, Verilog model, and core.

Note: If independent clocks or common clocks with built-in FIFO is selected, the user must use the
structural model, as the behavioral model does not support the built-in FIFO configurations.

http://www.xilinx.com

100 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Chapter 6: Simulating Your Design

Structural Models

The structural models are designed to provide a more accurate model of FIFO behavior at
the cost of simulation time. These models will provide a closer approximation of cycle
accuracy across clock domains for asynchronous FIFOs. No asynchronous FIFO model can
be 100% cycle accurate as physical relationships between the clock domains, including
temperature, process, and frequency relationships, affect the domain crossing
indeterminately.

To generate structural models, select Structural and VHDL or Verilog in the Xilinx CORE
Generator project options.

Note: Simulation performance may be impacted when simulating the structural models compared to
the behavioral models

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 101
UG175 April 19, 2010

Appendix A

Performance Information

Resource Utilization and Performance
Performance and resource utilization for a FIFO varies depending on the configuration
and features selected during core customization. The following tables show resource
utilization data and maximum performance values for a variety of sample FIFO
configurations.

See "Resource Utilization and Performance" in FIFO Generator Data Sheet for the
performance and resource utilization numbers.

http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ds317.pdf
http://www.xilinx.com

102 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Appendix A: Performance Information

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 103
UG175 April 19, 2010

Appendix B

Core Parameters

FIFO Parameters
Table B-1 describes the FIFO core parameters, including the XCO file value and the default
settings.

Table B-1: FIFO Parameter Table

Parameter Name XCO File Values Default GUI Setting

Component_Name instance_name

ASCII text starting with a letter and using the

following character set: a-z, 0-9, and _

fifo_generator_v4_4

FIFO Implementation Common_Clock_Block_RAM

Common_Clock_Distributed_RAM

Common_Clock_Shift_Register

Common_Clock_Builtin_FIFO

Independent_Clocks_Block_RAM

Independent_Clocks_Distributed_RAM

Independent_Clocks_Builtin_FIFO

Common_Clock_Block_RAM

Input Data Widtha Integer in range 1 to 1024 18

Output Data Width1 Integer in range 1 to 1024 18

Input Depth1 2N where N is an integer 4 to 24 1024

Output Depth1 2M where M is an integer 4 to 24 1024

Data Count Width Integer in range 1 to log2(Output Depth) 10

Read Clock Frequency Integer 1 to 1000 (MHz) 1

Write Clock Frequency Integer 1 to 1000 (MHz) 1

Almost Full Flag true, false false

Almost Empty Flag true, false false

Enable ECC true, false false

Programmable Full Type No_Programmable_Full_Threshold

Single_Programmable_Full_Threshold_Constant

Multiple_Programmable_Full_Threshold_Constants

Single_Programmable_Full_Threshold_Input_Port

Multiple_Programmable_Full_Threshold_Input_Ports

No_Programmable_Full_Thresh
old

http://www.xilinx.com

104 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Appendix B: Core Parameters

Full Threshold Assert
Value

See range under Programmable Flags. 1022

Full Threshold Negate
Value

See range under “Programmable Flags,” page 57. 1021

Programmable Empty
Type

No_Programmable_Empty_Threshold

Sigle_Programmable_Empty_Threshold_Constant

Multiple_Programmable_Empty_Threshold_Constant
s

Single_Programmable_Empty_Threshold_Input_Port

Multiple_Programmable_Empty_Threshold_Input_P
orts

No_Programmable_Empty_Thr
eshold

Empty Threshold Assert
Value

See range under “Programmable Flags,” page 57. 2

Empty Threshold Negate
Value

See range under “Programmable Flags,” page 57. 3

Write Acknowledge Flag true, false false

Write Acknowledge Sense Active_High, Active_Low Active_High

Overflow Flag true, false false

Overflow Sense Active_High, Active_Low Active_High

Valid Flag true, false false

Valid Sense Active_High, Active_Low Active_High

Underflow Flag true, false false

Underflow Sense Active_High, Active_Low Active_High

Use Dout Reset true, false true

Dout Reset Value Hex value in range of 0 to output data width - 1 0

Primitive Depth 512, 1024, 2048, 4096 1024

Read Data Count true, false false

Read Data Count Width Integer in range 1 to log2(output depth) 10

Write Data Count true, false false

Write Data Count Width Integer in range 1 to log2(input depth) 10

Data Count true, false false

Performance Options First_Word_Fall_Through, Standard_Fifo Standard_Fifo

Read Latency integer range 0 to 1 1

Reset Pin true, false true

Use Embedded Registers true, false false

Full Flags Reset Value 1, 0 1

Table B-1: FIFO Parameter Table (Cont’d)

Parameter Name XCO File Values Default GUI Setting

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 105
UG175 April 19, 2010

FIFO Parameters

a. A user-customized core should not exceed the number of shift registers, built-in FIFOs, block RAM, or distributed RAM primitives
available in the targeted architecture; it is the user’s responsibility to know the resource availability in the targeted device.

http://www.xilinx.com

106 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Appendix B: Core Parameters

http://www.xilinx.com

FIFO Generator v6.1 www.xilinx.com 107
UG175 April 19, 2010

Appendix C

DOUT Reset Value Timing

Figure C-1 shows the DOUT reset value for common clock block RAM, distributed RAM
and Shift Register based FIFOs for synchronous reset (SRST), and common clock block
RAM FIFO for asynchronous reset (RST).

Figure C-2 shows the DOUT reset value for common clock distributed RAM and Shift
Register based FIFOs for asynchronous reset (RST).

Figure C-3 shows the DOUT reset value for Virtex-6 FPGA common clock Built-in FIFO
with Embedded register for asynchronous reset (RST).

X-Ref Target - Figure C-1

Figure C-1: DOUT Reset Value for Synchronous Reset (SRST) and for
Asynchronous Reset (RST) for Common Clock Block RAM Based FIFO

X-Ref Target - Figure C-2

Figure C-2: DOUT Reset Value for Asynchronous Reset (RST) for Common Clock
Distributed/Shift RAM Based FIFO

X-Ref Target - Figure C-3

Figure C-3: DOUT Reset Value for Common Clock Built-in FIFO

CLK

RST/SRST

DOUT Previous value DOUT reset value

CLK

RST

DOUT Previous value DOUT reset value

CLK

RST

DOUT Previous value DOUT reset value

http://www.xilinx.com

108 www.xilinx.com FIFO Generator v6.1
UG175 April 19, 2010

Appendix C: DOUT Reset Value Timing

Figure C-4 shows the DOUT reset value for independent clock block RAM based FIFOs
(RD_RST).

Figure C-5 shows the DOUT reset value for independent clock distributed RAM based
FIFOs (RD_RST).

X-Ref Target - Figure C-4

Figure C-4: DOUT Reset Value for Independent Clock Block RAM Based FIFO

X-Ref Target - Figure C-5

Figure C-5: DOUT Reset Value for Independent Clock Distributed RAM Based FIFO

WR_CLK

WR_RST

DOUT Previous value DOUT reset value

RD_RST

RD_CLK

WR_CLK

WR_RST

DOUT Previous value DOUT reset value

RD_RST

RD_CLK

http://www.xilinx.com

	LogiCORE™ IP FIFO Generator v6.1
	Revision History
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Technical Support
	Feedback
	FIFO Generator
	Document

	Core Overview
	Feature Overview
	Clock Implementation Operation
	Virtex-6 and Virtex-5 FPGA Built-in FIFO Support
	Virtex-4 FPGA Built-in FIFO Support
	First-Word Fall-Through
	Memory Types
	Non-Symmetric Aspect Ratio
	Embedded Registers in Block RAM and FIFO Macros
	Error Injection and Correction

	Core Configuration and Implementation
	Common Clock: Block RAM, Distributed RAM, Shift Register
	Common Clock: Virtex-6, VIrtex-5 or Virtex-4 FPGA Built-in FIFO
	Independent Clocks: Block RAM and Distributed RAM
	Independent Clocks: Built-in FIFO for Virtex-6, Virtex-5 or Virtex-4 FPGAs

	FIFO Generator Features
	Using Block RAM FIFOs Instead of Built-in FIFOs
	FIFO Interfaces
	Interface Signals: FIFOs With Independent Clocks
	Interface Signals: FIFOs with Common Clock

	Generating the Core
	CORE Generator Graphical User Interface
	FIFO Implementation
	Component Name
	FIFO Implementation

	Performance Options and Data Port Parameters
	Read Mode
	Built-in FIFO Options
	Data Port Parameters
	Implementation Options

	Optional Flags, Handshaking, and Initialization
	Optional Flags
	Handshaking Options
	Error Injection

	Initialization and Programmable Flags
	Initialization
	Programmable Flags

	Data Count
	Data Count Options

	Summary

	Designing with the Core
	General Design Guidelines
	Know the Degree of Difficulty
	Understand Signal Pipelining and Synchronization

	Initializing the FIFO Generator
	FIFO Implementations
	Independent Clocks: Block RAM and Distributed RAM
	Independent Clocks: Built-in FIFO
	Common Clock: Built-in FIFO
	Common Clock FIFO: Block RAM and Distributed RAM
	Common Clock FIFO: Shift Registers

	FIFO Usage and Control
	Write Operation
	Read Operation
	Handshaking Flags
	Programmable Flags
	Data Counts
	Non-symmetric Aspect Ratios
	Embedded Registers in Block RAM and FIFO Macros (Virtex-6, Virtex-5 and Virtex-4 FPGAs)
	Built-in Error Correction Checking
	Built-in Error Injection
	Reset Behavior

	Actual FIFO Depth
	Block RAM, Distributed RAM and Shift RAM FIFOs
	Virtex-6 and Virtex-5 FPGA Built-In FIFOs
	Virtex-4 FPGA Built-In FIFOs

	Latency
	Non-Built-in FIFOs: Common Clock and Standard Read Mode Implementations
	Non-Built-in FIFOs: Common CLock and FWFT Read Mode Implementations
	Non-Built-in FIFOs: Independent Clock and Standard Read Mode Implementations
	Non-Built-in FIFOs: Independent Clock and FWFT Read Mode Implementations
	Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Common Clock and Standard Read Mode Implementations
	Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Common Clock and FWFT Read Mode Implementations
	Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Independent Clocks and Standard Read Mode Implementations
	Virtex-6 and Virtex-5 FPGA Built-in FIFOs: Independent Clocks and FWFT Read Mode Implementations
	Virtex-4 FPGA Built-in FIFO

	Special Design Considerations
	Resetting the FIFO
	Continuous Clocks
	Pessimistic Full and Empty
	Programmable Full and Empty
	Simultaneous Assertion of Full and Empty Flag
	Write Data Count and Read Data Count
	Setup and Hold Time Violations

	Simulating Your Design
	Simulation Models

	Performance Information
	Resource Utilization and Performance

	Core Parameters
	FIFO Parameters

	DOUT Reset Value Timing

