module quad_uart #(parameter TXDEPTH = 1, parameter RXDEPTH = 1) (input clk_i, input rst_i, input we_i, input stb_i, input cyc_i, output reg ack_o, input [4:0] adr_i, input [31:0] dat_i, output reg [31:0] dat_o, output [3:0] rx_int_o, output [3:0] tx_int_o, output [3:0] tx_o, input [3:0] rx_i, output [3:0] baud_o ); // Register Map localparam SUART_CLKDIV = 0; localparam SUART_TXLEVEL = 1; localparam SUART_RXLEVEL = 2; localparam SUART_TXCHAR = 3; localparam SUART_RXCHAR = 4; wire wb_acc = cyc_i & stb_i; // WISHBONE access wire wb_wr = wb_acc & we_i; // WISHBONE write access reg [15:0] clkdiv[0:3]; wire [7:0] rx_char[0:3]; wire [3:0] tx_fifo_full, rx_fifo_empty; wire [7:0] tx_fifo_level[0:3], rx_fifo_level[0:3]; always @(posedge clk_i) if (rst_i) ack_o <= 1'b0; else ack_o <= wb_acc & ~ack_o; integer i; always @(posedge clk_i) if (rst_i) for(i=0;i<4;i=i+1) clkdiv[i] <= 0; else if (wb_wr) case(adr_i[2:0]) SUART_CLKDIV : clkdiv[adr_i[4:3]] <= dat_i[15:0]; endcase // case(adr_i) always @(posedge clk_i) case (adr_i[2:0]) SUART_TXLEVEL : dat_o <= tx_fifo_level[adr_i[4:3]]; SUART_RXLEVEL : dat_o <= rx_fifo_level[adr_i[4:3]]; SUART_RXCHAR : dat_o <= rx_char[adr_i[4:3]]; endcase // case(adr_i) genvar j; generate for(j=0;j<4;j=j+1) begin : gen_uarts simple_uart_tx #(.DEPTH(TXDEPTH)) simple_uart_tx (.clk(clk_i),.rst(rst_i), .fifo_in(dat_i[7:0]),.fifo_write(ack_o && wb_wr && (adr_i[2:0] == SUART_TXCHAR) && (adr_i[4:3]==j)), .fifo_level(tx_fifo_level[j]),.fifo_full(tx_fifo_full[j]), .clkdiv(clkdiv[j]),.baudclk(baud_o[j]),.tx(tx_o[j])); simple_uart_rx #(.DEPTH(RXDEPTH)) simple_uart_rx (.clk(clk_i),.rst(rst_i), .fifo_out(rx_char[j]),.fifo_read(ack_o && ~wb_wr && (adr_i[2:0] == SUART_RXCHAR) && (adr_i[4:3]==j)), .fifo_level(rx_fifo_level[j]),.fifo_empty(rx_fifo_empty[j]), .clkdiv(clkdiv[j]),.rx(rx_i[j])); end // block: gen_uarts endgenerate assign tx_int_o = ~tx_fifo_full; // Interrupt for those that have space assign rx_int_o = ~rx_fifo_empty; // Interrupt for those that have data endmodule // quad_uart