module fifo19_to_fifo36 (input clk, input reset, input clear, input [18:0] f19_datain, input f19_src_rdy_i, output f19_dst_rdy_o, output [35:0] f36_dataout, output f36_src_rdy_o, input f36_dst_rdy_i, output [31:0] debug ); reg f36_sof, f36_eof, f36_occ; reg [1:0] state; reg [15:0] dat0, dat1; wire f19_sof = f19_datain[16]; wire f19_eof = f19_datain[17]; wire f19_occ = f19_datain[18]; wire xfer_out = f36_src_rdy_o & f36_dst_rdy_i; always @(posedge clk) if(f19_src_rdy_i & ((state==0)|xfer_out)) f36_sof <= f19_sof; always @(posedge clk) if(f19_src_rdy_i & ((state != 2)|xfer_out)) f36_eof <= f19_eof; always @(posedge clk) // FIXME check this if(f19_eof) f36_occ <= {state[0],f19_occ}; else f36_occ <= 0; always @(posedge clk) if(reset) state <= 0; else if(f19_src_rdy_i) case(state) 0 : if(f19_eof) state <= 2; else state <= 1; 1 : state <= 2; 2 : if(xfer_out) if(~f19_eof) state <= 1; // remain in state 2 if we are at eof endcase // case(state) else if(xfer_out) state <= 0; always @(posedge clk) if(f19_src_rdy_i & (state==1)) dat1 <= f19_datain; always @(posedge clk) if(f19_src_rdy_i & ((state==0) | xfer_out)) dat0 <= f19_datain; assign f19_dst_rdy_o = xfer_out | (state != 2); assign f36_dataout = {f36_occ,f36_eof,f36_sof,dat0,dat1}; assign f36_src_rdy_o = (state == 2); assign debug = state; endmodule // fifo19_to_fifo36