// // Copyright 2013-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // #include <stdio.h> #include <stdlib.h> #include <pcap.h> #include <netinet/in.h> #include <time.h> #include <string.h> #include "uhd_dump.h" #include "usrp3_regs.h" // Swap endianness of 64bits unsigned long swaplong (unsigned long nLongNumber) { union u {unsigned long vi; unsigned char c[sizeof(unsigned long)];}; union v {unsigned long ni; unsigned char d[sizeof(unsigned long)];}; union u un; union v vn; un.vi = nLongNumber; vn.d[0]=un.c[7]; vn.d[1]=un.c[6]; vn.d[2]=un.c[5]; vn.d[3]=un.c[4]; vn.d[4]=un.c[3]; vn.d[5]=un.c[2]; vn.d[6]=un.c[1]; vn.d[7]=un.c[0]; return (vn.ni); } // Swap endianness of 32bits unsigned int swapint (unsigned int nIntNumber) { union u {unsigned int vi; unsigned char c[sizeof(unsigned long)];}; union v {unsigned int ni; unsigned char d[sizeof(unsigned long)];}; union u un; union v vn; un.vi = nIntNumber; vn.d[0]=un.c[3]; vn.d[1]=un.c[2]; vn.d[2]=un.c[1]; vn.d[3]=un.c[0]; return (vn.ni); } // Swap Endianness of 16bits unsigned short swapshort (unsigned short nShortNumber) { union u {unsigned short vi; unsigned char c[sizeof(unsigned short)];}; union v {unsigned short ni; unsigned char d[sizeof(unsigned short)];}; union u un; union v vn; un.vi = nShortNumber; vn.d[0]=un.c[1]; vn.d[1]=un.c[0]; return (vn.ni); } // Format time from pcap as ascii style. char *format_gmt(const struct timeval *ts, char *buffer) { time_t seconds; struct tm gmt; seconds = ts->tv_sec; if ((gmtime_r(&seconds, &gmt)) == NULL) { fprintf(stderr, "Fatal time format conversion error.\n"); exit(2); } sprintf(buffer, "%04i-%02i-%02iT%02i:%02i:%02i,%03iZ", gmt.tm_year + 1900, gmt.tm_mon + 1, gmt.tm_mday, gmt.tm_hour, gmt.tm_min, gmt.tm_sec, (int) (ts->tv_usec / 1000)); return (buffer); } // Takes 2 timeval absolute timevalues, and returns a double value thats the relative time // difference normalized to seconds. double relative_time(struct timeval *event_ts, struct timeval *origin_ts) { struct timeval z; double x; timersub(event_ts,origin_ts,&z); x = (double)z.tv_sec + (double)z.tv_usec/1000000; return x; } // Convert timeval to double, normalized to seconds. double timeval2double(struct timeval *event_ts) { double x; x = (double)event_ts->tv_sec + (double)event_ts->tv_usec/1000000; return x; } void get_packet(struct pbuf_info *packet_buffer , const struct pcap_pkthdr *header, const u_char *packet) { // Get size of new packet packet_buffer->current->size = header->caplen; packet_buffer->current->orig_size = header->len; // Allocate memory for packet packet_buffer->current->payload = (char *)malloc((size_t)packet_buffer->current->size); // Copy Packet into buffer memcpy(packet_buffer->current->payload,packet,packet_buffer->current->size); packet_buffer->current->ts = header->ts; // Allocate memory for next pbuf in chain, init it and shift list. packet_buffer->current->next = malloc(sizeof (struct pbuf)); packet_buffer->current->next->last = packet_buffer->current; packet_buffer->current = packet_buffer->current->next; } // This grabs the (absolute) time stamp of the first packet in the cature file, which can be used to // derive times relative to the start of the capture file for cross correlation with interactive work // in Wireshark void get_start_time(struct timeval *ts , const struct pcap_pkthdr *header, const u_char *packet) { *ts = header->ts; } void get_udp_port_from_file(const u16 udp_port, const char *filename, struct pbuf_info *packet_buffer, struct timeval *ts) { pcap_t *handle; // Session handle char errbuf[PCAP_ERRBUF_SIZE]; // Error string char filter_exp[256]; // The ascii filter expression struct bpf_program filter; // The compiled filter // Open PCAP file for read capture time stamp of first packet if ((handle = pcap_open_offline(filename,errbuf)) == NULL) { fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf); exit(2); } // Parse PCAP file with no filter to grab the time stamp of the first captured packet, which becomes the time origin // local to the capture file. if (pcap_dispatch(handle, 1, (pcap_handler) get_start_time, (u_char *)ts) == -1) { fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle)); exit(2); } // Close file again because no way to rewind file descriptor. pcap_close(handle); // Open PCAP file for read. if ((handle = pcap_open_offline(filename,errbuf)) == NULL) { fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf); exit(2); } // Build ASCII filter expression from UDP port sprintf(filter_exp,"udp port %d",udp_port); printf("\nBPF filter is udp port %d\n",udp_port); // Compile filter string to BPF if (pcap_compile(handle, &filter, filter_exp, 0, 0) == -1) { fprintf(stderr, "Couldn't parse filter %s: %s\n", filter_exp, pcap_geterr(handle)); exit(2); } // Apply filter if (pcap_setfilter(handle, &filter) == -1) { fprintf(stderr, "Couldn't install filter %s: %s\n", filter_exp, pcap_geterr(handle)); exit(2); } // Allocate and initialize packet buffer linked list packet_buffer->start = packet_buffer->current = malloc(sizeof (struct pbuf)); packet_buffer->start->last = NULL; // Parse PCAP file using filter, collect all interesting packets. if (pcap_dispatch(handle, -1, (pcap_handler) get_packet, (u_char *)packet_buffer) == -1) { fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle)); exit(2); } // If no packets matched in the capture then linked list should be completely empty. if ( packet_buffer->start == packet_buffer->current) { free(packet_buffer->current); packet_buffer->start = packet_buffer->current = NULL; } else { // Note the last used buffer in the list. Removed allocated but unused buffer from list and free packet_buffer->end = packet_buffer->current->last; packet_buffer->end->next = NULL; free(packet_buffer->current); } } // // Read a pcap file into memory. // void get_everything_from_file(const char *filename, struct pbuf_info *packet_buffer, struct timeval *ts) { pcap_t *handle; // Session handle char errbuf[PCAP_ERRBUF_SIZE]; // Error string // Open PCAP file for read capture time stamp of first packet if ((handle = pcap_open_offline(filename,errbuf)) == NULL) { fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf); exit(2); } // Parse PCAP file with no filter to grab the time stamp of the first captured packet, which becomes the time origin // local to the capture file. if (pcap_dispatch(handle, 1, (pcap_handler) get_start_time, (u_char *)ts) == -1) { fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle)); exit(2); } // Close file again because no way to rewind file descriptor. pcap_close(handle); // Open PCAP file for read if ((handle = pcap_open_offline(filename,errbuf)) == NULL) { fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf); exit(2); } // Allocate and initialize packet buffer linked list packet_buffer->start = packet_buffer->current = malloc(sizeof (struct pbuf)); packet_buffer->start->last = NULL; // Parse PCAP file using filter, collect all interesting packets. if (pcap_dispatch(handle, -1, (pcap_handler) get_packet, (u_char *)packet_buffer) == -1) { fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle)); exit(2); } // If no packets matched in the capture then linked list should be completely empty. if ( packet_buffer->start == packet_buffer->current) { free(packet_buffer->current); packet_buffer->start = packet_buffer->current = NULL; } else { // Note the last used buffer in the list. Removed allocated but unused buffer from list and free packet_buffer->end = packet_buffer->current->last; packet_buffer->end->next = NULL; free(packet_buffer->current); } } // Debug void print_raw(const struct pbuf_info *packet_buffer, const int count) { const u8 *raw; int x; raw = (u8 *) packet_buffer; fprintf(stdout," "); for (x = 0; x<count; x++) fprintf(stdout,"%02x ",*(raw+x)); } // Print to STDOUT the direction of this packet flow void print_direction(const struct pbuf_info *packet_buffer, const struct in_addr *host_addr, const struct in_addr *usrp_addr) { const struct ip_header *ip_header; // Overlay IP header on packet payload ip_header = (struct ip_header *)(packet_buffer->current->payload+ETH_SIZE); if ((host_addr->s_addr == ip_header->ip_src.s_addr) && (usrp_addr->s_addr == ip_header->ip_dst.s_addr)) fprintf(stdout,"Host->USRP"); else if ((host_addr->s_addr == ip_header->ip_dst.s_addr) && (usrp_addr->s_addr == ip_header->ip_src.s_addr)) fprintf(stdout,"USRP->Host"); else fprintf(stdout,"UNKNOWN"); } // Print to STDOUT the CHDR size in bytes void print_size(const struct pbuf_info *packet_buffer) { const struct chdr_header *chdr_header; // Overlay CHDR header on packet payload chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE); fprintf(stdout,"Size: %04d ",(swapint(chdr_header->chdr_type) & SIZE)); } // Print to STDOUT the CHDR SID decode void print_sid(const struct pbuf_info *packet_buffer) { const struct chdr_header *chdr_header; const struct chdr_sid *chdr_sid; // Overlay CHDR header on packet payload chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE); // Overlay CHDR SID definition on CHDR SID. chdr_sid = (struct chdr_sid *)&(chdr_header->chdr_sid); fprintf(stdout,"%02x.%02x->%02x.%02x",chdr_sid->src_device,chdr_sid->src_endpoint,chdr_sid->dst_device,chdr_sid->dst_endpoint); } // Print to STDOUT a decoded tx response packet payload. void print_tx_response(const struct tx_response *tx_response) { switch(swapint(tx_response->error_code)) { case TX_ACK: fprintf(stdout,"ACK "); break; case TX_EOB: fprintf(stdout,"EOB "); break; case TX_UNDERRUN: fprintf(stdout,"Underrun "); break; case TX_SEQ_ERROR: fprintf(stdout,"Sequence Error "); break; case TX_TIME_ERROR: fprintf(stdout,"Time Error "); break; case TX_MIDBURST_SEQ_ERROR: fprintf(stdout,"Mid-Burst Seq Errror "); break; default: fprintf(stdout,"Unknown Error "); } fprintf(stdout,"for SeqID = %03x ",swapint(tx_response->seq_id)&0xFFF); } // Returns Name of a register from it's address char *reg_addr_to_name(const u32 addr) { int x; x = 0; while((reg_list[x].addr != addr) && (reg_list[x].addr != 999)) x++; return(reg_list[x].name); } // Print to STDOUT decode of CHDR header including time if present. void print_vita_header(const struct pbuf_info *packet_buffer, const struct in_addr *host_addr) { const struct ip_header *ip_header; const struct chdr_header *chdr_header; const struct chdr_sid *chdr_sid; const struct radio_ctrl_payload *radio_ctrl_payload; const struct radio_response *radio_response; const struct tx_response *tx_response; const struct src_flow_ctrl *src_flow_ctrl; const struct vita_time *vita_time; int direction; u8 endpoint; int has_time; // Overlay IP header on packet payload ip_header = (struct ip_header *)(packet_buffer->current->payload+ETH_SIZE); // Overlay CHDR header on packet payload chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE); // Overlay CHDR SID definition on CHDR SID. chdr_sid = (struct chdr_sid *)&(chdr_header->chdr_sid); // Identify packet direction if (ip_header->ip_src.s_addr == host_addr->s_addr) direction = H2U; else direction = U2H; // Decode packet type if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT) fprintf(stdout,"Context Ext "); else fprintf(stdout,"IF Data "); // Determine USRP Sink/Src Endpoint if (direction==H2U) endpoint = (chdr_sid->dst_endpoint) & 0x3; else if (direction==U2H) endpoint = (chdr_sid->src_endpoint) & 0x3; // Look for CHDR EOB flags. if ((swapint(chdr_header->chdr_type) & EOB) == EOB) fprintf(stdout,"EOB "); else fprintf(stdout," "); // Is there embeded VITA time? if ((swapint(chdr_header->chdr_type) & HAS_TIME) == HAS_TIME) { vita_time = (struct vita_time *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE); fprintf(stdout,"Time=%016lx ",swaplong(vita_time->time)); has_time = 1; } else { fprintf(stdout," "); has_time = 0; } fprintf(stdout,"SeqID=%03x ",(swapint(chdr_header->chdr_type)>>16)&0xFFF); // Print Payload if (endpoint == RADIO) { if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) != EXT_CONTEXT) { if (direction == H2U) { fprintf(stdout,"TX IF Data "); } else // U2H { fprintf(stdout,"RX IF Data "); } } else if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT) { if (direction == H2U) { // BAD PACKET } else // U2H { // TX Response packet. tx_response = (struct tx_response *) (packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(has_time?VITA_TIME_SIZE:0)); print_tx_response(tx_response); } } } else if (endpoint == RADIO_CTRL) { fprintf(stdout,"\t\t\t"); if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) != EXT_CONTEXT) { // BAD PACKET } else if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT) { if (direction == H2U) { radio_ctrl_payload = (struct radio_ctrl_payload *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(VITA_TIME_SIZE*has_time)); fprintf(stdout,"Radio Ctrl %s(0x%02x)=0x%08x",reg_addr_to_name(swapint(radio_ctrl_payload->addr)),(u8)swapint(radio_ctrl_payload->addr),swapint(radio_ctrl_payload->data)); } else // U2H { radio_response = (struct radio_response *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(VITA_TIME_SIZE*has_time)); fprintf(stdout,"Radio Response = 0x%016lx",swaplong(radio_response->data)); } } } else if (endpoint == SRC_FLOW_CTRL) { if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) != EXT_CONTEXT) { // BAD PACKET } else if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT) { if (direction == H2U) { src_flow_ctrl = (struct src_flow_ctrl *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(VITA_TIME_SIZE*has_time)); fprintf(stdout,"Src Flow Ctrl = 0x%04x",swapint(src_flow_ctrl->seq_id)); } else // U2H { // Bad Packet } } } //print_raw((struct pbuf_info *)vrt_header,16); } // Find IP addresses for Host and USRP in this Session void get_connection_endpoints( struct pbuf_info *packet_buffer, struct in_addr *host_addr, struct in_addr *usrp_addr) { const struct ip_header *ip_header; const struct chdr_header *chdr_header; const struct chdr_sid *chdr_sid; // Determine which side of the stream is Host and which is USRP by probing capture until a // CHDR message type is discovered. The SID reveals which direction the packet is traveling. // Then record apparent IP addresses of Host and USRP for future packet clasification. packet_buffer->current = packet_buffer->start; host_addr->s_addr = 0x0; usrp_addr->s_addr = 0x0; while (packet_buffer->current != NULL) { // Overlay IP header on packet payload ip_header = (struct ip_header *)(packet_buffer->current->payload+ETH_SIZE); // Overlay CHDR header on packet payload chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE); // Overlay CHDR SID definition on CHDR SID. chdr_sid = (struct chdr_sid *)&(chdr_header->chdr_sid); // Catagorise stream // CHDR is actually quite hard to conclusively detect, the following deductions help... // For CHDR v2 bit 62 should always be 0 (reserved) // Bit 47 should always be 0 because sizes > 8192 are unsupport be typical ethernet MTU's // By convention currently the host uses SID address 0.x so the first packets in a new UHD session // should flow from Host to Device hence [31:24] = 0. if ( ((swapint(chdr_header->chdr_type) & 0x40000000) != 0x0) || ((swapint(chdr_header->chdr_type) & 0x8000) != 0x0) || ((swapint(chdr_header->chdr_sid) & 0xFF000000) != 0x0) || ((swapint(chdr_header->chdr_sid) & 0x0000FF00) == 0x0) ) fprintf(stderr,"Current packet is not CHDR. Skipping."); else { // Implicitly CHDR (At least that is our best guess) // Go take a look at the SID and see who is boss. if ((chdr_sid->src_device == 0) && (chdr_sid->dst_device != 0)) { // Host->USRP host_addr->s_addr = ip_header->ip_src.s_addr; usrp_addr->s_addr = ip_header->ip_dst.s_addr; break; } else if ((chdr_sid->src_device == 0) && (chdr_sid->dst_device != 0)) { // USRP->Host usrp_addr->s_addr = ip_header->ip_src.s_addr; host_addr->s_addr = ip_header->ip_dst.s_addr; break; } else { fprintf(stderr,"Malformed CHDR packet, SID is unexpected value: 0x%x",swapint(chdr_header->chdr_sid)); } } packet_buffer->current = packet_buffer->current->next; } if (host_addr->s_addr == 0) { fprintf(stderr, "Could not identify Host/USRP direction in capture analysis, exiting.\n"); exit(2); } }