//
// Copyright 2013-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include "uhd_dump.h"
#include "usrp3_regs.h"
// Swap endianness of 64bits
unsigned long swaplong (unsigned long nLongNumber)
{
union u {unsigned long vi; unsigned char c[sizeof(unsigned long)];};
union v {unsigned long ni; unsigned char d[sizeof(unsigned long)];};
union u un;
union v vn;
un.vi = nLongNumber;
vn.d[0]=un.c[7];
vn.d[1]=un.c[6];
vn.d[2]=un.c[5];
vn.d[3]=un.c[4];
vn.d[4]=un.c[3];
vn.d[5]=un.c[2];
vn.d[6]=un.c[1];
vn.d[7]=un.c[0];
return (vn.ni);
}
// Swap endianness of 32bits
unsigned int swapint (unsigned int nIntNumber)
{
union u {unsigned int vi; unsigned char c[sizeof(unsigned long)];};
union v {unsigned int ni; unsigned char d[sizeof(unsigned long)];};
union u un;
union v vn;
un.vi = nIntNumber;
vn.d[0]=un.c[3];
vn.d[1]=un.c[2];
vn.d[2]=un.c[1];
vn.d[3]=un.c[0];
return (vn.ni);
}
// Swap Endianness of 16bits
unsigned short swapshort (unsigned short nShortNumber)
{
union u {unsigned short vi; unsigned char c[sizeof(unsigned short)];};
union v {unsigned short ni; unsigned char d[sizeof(unsigned short)];};
union u un;
union v vn;
un.vi = nShortNumber;
vn.d[0]=un.c[1];
vn.d[1]=un.c[0];
return (vn.ni);
}
// Format time from pcap as ascii style.
char *format_gmt(const struct timeval *ts, char *buffer)
{
time_t seconds;
struct tm gmt;
seconds = ts->tv_sec;
if ((gmtime_r(&seconds, &gmt)) == NULL) {
fprintf(stderr, "Fatal time format conversion error.\n");
exit(2);
}
sprintf(buffer,
"%04i-%02i-%02iT%02i:%02i:%02i,%03iZ",
gmt.tm_year + 1900, gmt.tm_mon + 1, gmt.tm_mday,
gmt.tm_hour, gmt.tm_min, gmt.tm_sec, (int) (ts->tv_usec / 1000));
return (buffer);
}
// Takes 2 timeval absolute timevalues, and returns a double value thats the relative time
// difference normalized to seconds.
double relative_time(struct timeval *event_ts, struct timeval *origin_ts)
{
struct timeval z;
double x;
timersub(event_ts,origin_ts,&z);
x = (double)z.tv_sec + (double)z.tv_usec/1000000;
return x;
}
// Convert timeval to double, normalized to seconds.
double timeval2double(struct timeval *event_ts)
{
double x;
x = (double)event_ts->tv_sec + (double)event_ts->tv_usec/1000000;
return x;
}
void get_packet(struct pbuf_info *packet_buffer , const struct pcap_pkthdr *header, const u_char *packet)
{
// Get size of new packet
packet_buffer->current->size = header->caplen;
packet_buffer->current->orig_size = header->len;
// Allocate memory for packet
packet_buffer->current->payload = (char *)malloc((size_t)packet_buffer->current->size);
// Copy Packet into buffer
memcpy(packet_buffer->current->payload,packet,packet_buffer->current->size);
packet_buffer->current->ts = header->ts;
// Allocate memory for next pbuf in chain, init it and shift list.
packet_buffer->current->next = malloc(sizeof (struct pbuf));
packet_buffer->current->next->last = packet_buffer->current;
packet_buffer->current = packet_buffer->current->next;
}
// This grabs the (absolute) time stamp of the first packet in the cature file, which can be used to
// derive times relative to the start of the capture file for cross correlation with interactive work
// in Wireshark
void get_start_time(struct timeval *ts , const struct pcap_pkthdr *header, const u_char *packet)
{
*ts = header->ts;
}
void get_udp_port_from_file(const u16 udp_port, const char *filename, struct pbuf_info *packet_buffer, struct timeval *ts)
{
pcap_t *handle; // Session handle
char errbuf[PCAP_ERRBUF_SIZE]; // Error string
char filter_exp[256]; // The ascii filter expression
struct bpf_program filter; // The compiled filter
// Open PCAP file for read capture time stamp of first packet
if ((handle = pcap_open_offline(filename,errbuf)) == NULL) {
fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf);
exit(2);
}
// Parse PCAP file with no filter to grab the time stamp of the first captured packet, which becomes the time origin
// local to the capture file.
if (pcap_dispatch(handle, 1, (pcap_handler) get_start_time, (u_char *)ts) == -1) {
fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle));
exit(2);
}
// Close file again because no way to rewind file descriptor.
pcap_close(handle);
// Open PCAP file for read.
if ((handle = pcap_open_offline(filename,errbuf)) == NULL) {
fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf);
exit(2);
}
// Build ASCII filter expression from UDP port
sprintf(filter_exp,"udp port %d",udp_port);
printf("\nBPF filter is udp port %d\n",udp_port);
// Compile filter string to BPF
if (pcap_compile(handle, &filter, filter_exp, 0, 0) == -1) {
fprintf(stderr, "Couldn't parse filter %s: %s\n", filter_exp, pcap_geterr(handle));
exit(2);
}
// Apply filter
if (pcap_setfilter(handle, &filter) == -1) {
fprintf(stderr, "Couldn't install filter %s: %s\n", filter_exp, pcap_geterr(handle));
exit(2);
}
// Allocate and initialize packet buffer linked list
packet_buffer->start = packet_buffer->current = malloc(sizeof (struct pbuf));
packet_buffer->start->last = NULL;
// Parse PCAP file using filter, collect all interesting packets.
if (pcap_dispatch(handle, -1, (pcap_handler) get_packet, (u_char *)packet_buffer) == -1) {
fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle));
exit(2);
}
// If no packets matched in the capture then linked list should be completely empty.
if ( packet_buffer->start == packet_buffer->current) {
free(packet_buffer->current);
packet_buffer->start = packet_buffer->current = NULL;
} else {
// Note the last used buffer in the list. Removed allocated but unused buffer from list and free
packet_buffer->end = packet_buffer->current->last;
packet_buffer->end->next = NULL;
free(packet_buffer->current);
}
}
//
// Read a pcap file into memory.
//
void get_everything_from_file(const char *filename, struct pbuf_info *packet_buffer, struct timeval *ts)
{
pcap_t *handle; // Session handle
char errbuf[PCAP_ERRBUF_SIZE]; // Error string
// Open PCAP file for read capture time stamp of first packet
if ((handle = pcap_open_offline(filename,errbuf)) == NULL) {
fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf);
exit(2);
}
// Parse PCAP file with no filter to grab the time stamp of the first captured packet, which becomes the time origin
// local to the capture file.
if (pcap_dispatch(handle, 1, (pcap_handler) get_start_time, (u_char *)ts) == -1) {
fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle));
exit(2);
}
// Close file again because no way to rewind file descriptor.
pcap_close(handle);
// Open PCAP file for read
if ((handle = pcap_open_offline(filename,errbuf)) == NULL) {
fprintf(stderr,"Can't open pcap file for reading: %s\n",errbuf);
exit(2);
}
// Allocate and initialize packet buffer linked list
packet_buffer->start = packet_buffer->current = malloc(sizeof (struct pbuf));
packet_buffer->start->last = NULL;
// Parse PCAP file using filter, collect all interesting packets.
if (pcap_dispatch(handle, -1, (pcap_handler) get_packet, (u_char *)packet_buffer) == -1) {
fprintf(stderr, "Error parsing PCAP file: %s\n", pcap_geterr(handle));
exit(2);
}
// If no packets matched in the capture then linked list should be completely empty.
if ( packet_buffer->start == packet_buffer->current) {
free(packet_buffer->current);
packet_buffer->start = packet_buffer->current = NULL;
} else {
// Note the last used buffer in the list. Removed allocated but unused buffer from list and free
packet_buffer->end = packet_buffer->current->last;
packet_buffer->end->next = NULL;
free(packet_buffer->current);
}
}
// Debug
void print_raw(const struct pbuf_info *packet_buffer, const int count)
{
const u8 *raw;
int x;
raw = (u8 *) packet_buffer;
fprintf(stdout," ");
for (x = 0; xcurrent->payload+ETH_SIZE);
if ((host_addr->s_addr == ip_header->ip_src.s_addr) && (usrp_addr->s_addr == ip_header->ip_dst.s_addr))
fprintf(stdout,"Host->USRP");
else if ((host_addr->s_addr == ip_header->ip_dst.s_addr) && (usrp_addr->s_addr == ip_header->ip_src.s_addr))
fprintf(stdout,"USRP->Host");
else
fprintf(stdout,"UNKNOWN");
}
// Print to STDOUT the CHDR size in bytes
void print_size(const struct pbuf_info *packet_buffer)
{
const struct chdr_header *chdr_header;
// Overlay CHDR header on packet payload
chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE);
fprintf(stdout,"Size: %04d ",(swapint(chdr_header->chdr_type) & SIZE));
}
// Print to STDOUT the CHDR SID decode
void print_sid(const struct pbuf_info *packet_buffer)
{
const struct chdr_header *chdr_header;
const struct chdr_sid *chdr_sid;
// Overlay CHDR header on packet payload
chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE);
// Overlay CHDR SID definition on CHDR SID.
chdr_sid = (struct chdr_sid *)&(chdr_header->chdr_sid);
fprintf(stdout,"%02x.%02x->%02x.%02x",chdr_sid->src_device,chdr_sid->src_endpoint,chdr_sid->dst_device,chdr_sid->dst_endpoint);
}
// Print to STDOUT a decoded tx response packet payload.
void print_tx_response(const struct tx_response *tx_response)
{
switch(swapint(tx_response->error_code))
{
case TX_ACK: fprintf(stdout,"ACK "); break;
case TX_EOB: fprintf(stdout,"EOB "); break;
case TX_UNDERRUN: fprintf(stdout,"Underrun "); break;
case TX_SEQ_ERROR: fprintf(stdout,"Sequence Error "); break;
case TX_TIME_ERROR: fprintf(stdout,"Time Error "); break;
case TX_MIDBURST_SEQ_ERROR: fprintf(stdout,"Mid-Burst Seq Errror "); break;
default: fprintf(stdout,"Unknown Error ");
}
fprintf(stdout,"for SeqID = %03x ",swapint(tx_response->seq_id)&0xFFF);
}
// Returns Name of a register from it's address
char *reg_addr_to_name(const u32 addr)
{
int x;
x = 0;
while((reg_list[x].addr != addr) && (reg_list[x].addr != 999))
x++;
return(reg_list[x].name);
}
// Print to STDOUT decode of CHDR header including time if present.
void print_vita_header(const struct pbuf_info *packet_buffer, const struct in_addr *host_addr)
{
const struct ip_header *ip_header;
const struct chdr_header *chdr_header;
const struct chdr_sid *chdr_sid;
const struct radio_ctrl_payload *radio_ctrl_payload;
const struct radio_response *radio_response;
const struct tx_response *tx_response;
const struct src_flow_ctrl *src_flow_ctrl;
const struct vita_time *vita_time;
int direction;
u8 endpoint;
int has_time;
// Overlay IP header on packet payload
ip_header = (struct ip_header *)(packet_buffer->current->payload+ETH_SIZE);
// Overlay CHDR header on packet payload
chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE);
// Overlay CHDR SID definition on CHDR SID.
chdr_sid = (struct chdr_sid *)&(chdr_header->chdr_sid);
// Identify packet direction
if (ip_header->ip_src.s_addr == host_addr->s_addr)
direction = H2U;
else
direction = U2H;
// Decode packet type
if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT) fprintf(stdout,"Context Ext ");
else fprintf(stdout,"IF Data ");
// Determine USRP Sink/Src Endpoint
if (direction==H2U)
endpoint = (chdr_sid->dst_endpoint) & 0x3;
else if (direction==U2H)
endpoint = (chdr_sid->src_endpoint) & 0x3;
// Look for CHDR EOB flags.
if ((swapint(chdr_header->chdr_type) & EOB) == EOB) fprintf(stdout,"EOB ");
else fprintf(stdout," ");
// Is there embeded VITA time?
if ((swapint(chdr_header->chdr_type) & HAS_TIME) == HAS_TIME) {
vita_time = (struct vita_time *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE);
fprintf(stdout,"Time=%016lx ",swaplong(vita_time->time));
has_time = 1;
} else {
fprintf(stdout," ");
has_time = 0;
}
fprintf(stdout,"SeqID=%03x ",(swapint(chdr_header->chdr_type)>>16)&0xFFF);
// Print Payload
if (endpoint == RADIO)
{
if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) != EXT_CONTEXT)
{
if (direction == H2U)
{
fprintf(stdout,"TX IF Data ");
}
else
// U2H
{
fprintf(stdout,"RX IF Data ");
}
}
else if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT)
{
if (direction == H2U)
{
// BAD PACKET
}
else
// U2H
{
// TX Response packet.
tx_response = (struct tx_response *) (packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(has_time?VITA_TIME_SIZE:0));
print_tx_response(tx_response);
}
}
}
else if (endpoint == RADIO_CTRL)
{
fprintf(stdout,"\t\t\t");
if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) != EXT_CONTEXT)
{
// BAD PACKET
}
else if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT)
{
if (direction == H2U)
{
radio_ctrl_payload = (struct radio_ctrl_payload *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(VITA_TIME_SIZE*has_time));
fprintf(stdout,"Radio Ctrl %s(0x%02x)=0x%08x",reg_addr_to_name(swapint(radio_ctrl_payload->addr)),(u8)swapint(radio_ctrl_payload->addr),swapint(radio_ctrl_payload->data));
}
else
// U2H
{
radio_response = (struct radio_response *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(VITA_TIME_SIZE*has_time));
fprintf(stdout,"Radio Response = 0x%016lx",swaplong(radio_response->data));
}
}
}
else if (endpoint == SRC_FLOW_CTRL)
{
if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) != EXT_CONTEXT)
{
// BAD PACKET
}
else if ((swapint(chdr_header->chdr_type) & EXT_CONTEXT) == EXT_CONTEXT)
{
if (direction == H2U)
{
src_flow_ctrl = (struct src_flow_ctrl *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE+CHDR_SIZE+(VITA_TIME_SIZE*has_time));
fprintf(stdout,"Src Flow Ctrl = 0x%04x",swapint(src_flow_ctrl->seq_id));
}
else
// U2H
{
// Bad Packet
}
}
}
//print_raw((struct pbuf_info *)vrt_header,16);
}
// Find IP addresses for Host and USRP in this Session
void get_connection_endpoints( struct pbuf_info *packet_buffer, struct in_addr *host_addr, struct in_addr *usrp_addr)
{
const struct ip_header *ip_header;
const struct chdr_header *chdr_header;
const struct chdr_sid *chdr_sid;
// Determine which side of the stream is Host and which is USRP by probing capture until a
// CHDR message type is discovered. The SID reveals which direction the packet is traveling.
// Then record apparent IP addresses of Host and USRP for future packet clasification.
packet_buffer->current = packet_buffer->start;
host_addr->s_addr = 0x0;
usrp_addr->s_addr = 0x0;
while (packet_buffer->current != NULL) {
// Overlay IP header on packet payload
ip_header = (struct ip_header *)(packet_buffer->current->payload+ETH_SIZE);
// Overlay CHDR header on packet payload
chdr_header = (struct chdr_header *)(packet_buffer->current->payload+ETH_SIZE+IP_SIZE+UDP_SIZE);
// Overlay CHDR SID definition on CHDR SID.
chdr_sid = (struct chdr_sid *)&(chdr_header->chdr_sid);
// Catagorise stream
// CHDR is actually quite hard to conclusively detect, the following deductions help...
// For CHDR v2 bit 62 should always be 0 (reserved)
// Bit 47 should always be 0 because sizes > 8192 are unsupport be typical ethernet MTU's
// By convention currently the host uses SID address 0.x so the first packets in a new UHD session
// should flow from Host to Device hence [31:24] = 0.
if (
((swapint(chdr_header->chdr_type) & 0x40000000) != 0x0) ||
((swapint(chdr_header->chdr_type) & 0x8000) != 0x0) ||
((swapint(chdr_header->chdr_sid) & 0xFF000000) != 0x0) ||
((swapint(chdr_header->chdr_sid) & 0x0000FF00) == 0x0)
)
fprintf(stderr,"Current packet is not CHDR. Skipping.");
else
{
// Implicitly CHDR (At least that is our best guess)
// Go take a look at the SID and see who is boss.
if ((chdr_sid->src_device == 0) && (chdr_sid->dst_device != 0))
{
// Host->USRP
host_addr->s_addr = ip_header->ip_src.s_addr;
usrp_addr->s_addr = ip_header->ip_dst.s_addr;
break;
}
else if ((chdr_sid->src_device == 0) && (chdr_sid->dst_device != 0))
{
// USRP->Host
usrp_addr->s_addr = ip_header->ip_src.s_addr;
host_addr->s_addr = ip_header->ip_dst.s_addr;
break;
}
else
{
fprintf(stderr,"Malformed CHDR packet, SID is unexpected value: 0x%x",swapint(chdr_header->chdr_sid));
}
}
packet_buffer->current = packet_buffer->current->next;
}
if (host_addr->s_addr == 0) {
fprintf(stderr, "Could not identify Host/USRP direction in capture analysis, exiting.\n");
exit(2);
}
}