//
// Copyright 2011-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
//#define HAS_RX_METADATA_OUT_OF_SEQUENCE
#define COLOUR_START "\033["
#define COLOUR_END "m"
#define COLOUR_RESET COLOUR_START"0"COLOUR_END
#define COLOUR_BLACK "0"
#define COLOUR_RED "1"
#define COLOUR_GREEN "2"
#define COLOUR_YELLOW "3"
#define COLOUR_BLUE "4"
#define COLOUR_MAGENTA "5"
#define COLOUR_CYAN "6"
#define COLOUR_WHITE "7"
#define COLOUR_LOW "3"
#define COLOUR_HIGH "9"
#define COLOUR_BACK "4"
#define COLOUR_BACK_HIGH "10"
#define COLOUR_BOLD "1"
#define COLOUR_UNDERLINE "4"
#define HEADER "[ ] "
#define HEADER_TX "[" COLOUR_START COLOUR_HIGH COLOUR_RED COLOUR_END "TX" COLOUR_RESET "] "
#define HEADER_RX "[" COLOUR_START COLOUR_HIGH COLOUR_GREEN COLOUR_END "RX" COLOUR_RESET "] "
#define HEADER_AS "[" COLOUR_START COLOUR_HIGH COLOUR_BLUE COLOUR_END "AS" COLOUR_RESET "] "
#define HEADER_ERROR "[" COLOUR_START COLOUR_BACK_HIGH COLOUR_RED COLOUR_END "!!" COLOUR_RESET "] "
#define HEADER_WARN "[" COLOUR_START COLOUR_BACK_HIGH COLOUR_YELLOW COLOUR_END "**" COLOUR_RESET "] "
#define TICKS_PER_SEC boost::posix_time::time_duration::ticks_per_second()
/***********************************************************************
* Test result variables
**********************************************************************/
unsigned long long num_overflows = 0;
unsigned long long num_underflows = 0;
unsigned long long num_underflows_in_packet = 0;
unsigned long long num_rx_samps = 0;
unsigned long long num_tx_samps = 0;
unsigned long long num_dropped_samps = 0;
unsigned long long num_seq_errors = 0;
unsigned long long num_seq_errors_in_burst = 0;
unsigned long long num_tx_acks = 0;
unsigned long long num_late_packets = 0;
unsigned long long num_late_packets_msg = 0;
unsigned long long num_send_calls = 0;
static boost::condition_variable rx_thread_complete, tx_thread_complete, tx_async_thread_complete;
static boost::condition_variable begin, abort_event, rx_thread_begin, tx_thread_begin, recv_done/*, tx_async_begin*/;
static uhd::rx_metadata_t last_rx_md;
static size_t last_rx_samps;
static boost::mutex last_rx_md_mutex, begin_rx_mutex, begin_tx_mutex, begin_tx_async_begin, stop_mutex;
static volatile bool running = false;
static volatile boost::this_thread::disable_interruption *rx_interrupt_disabler, *tx_interrupt_disabler, *tx_async_interrupt_disabler;
static bool rx_thread_finished = false, tx_thread_finished = false, tx_async_thread_finished = false;
static bool stop_signal_called = false;
static void sig_int_handler(int signal)
{
boost::mutex::scoped_lock l(stop_mutex);
running = false;
stop_signal_called = true;
abort_event.notify_all();
}
// Derived from: http://cc.byexamples.com/2007/04/08/non-blocking-user-input-in-loop-without-ncurses/
static bool kbhit(size_t timeout = 0/*ms*/)
{
struct timeval tv;
fd_set fds;
tv.tv_sec = timeout / 1000;
tv.tv_usec = (timeout % 1000) * 1000;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds);
select(STDIN_FILENO+1, &fds, NULL, NULL, &tv);
return (FD_ISSET(0, &fds));
}
static void set_nonblock(bool enable)
{
struct termios ttystate;
//get the terminal state
tcgetattr(STDIN_FILENO, &ttystate);
if (enable)
{
//turn off canonical mode
ttystate.c_lflag &= ~ICANON;
//minimum of number input read.
ttystate.c_cc[VMIN] = 1;
}
else
{
//turn on canonical mode
ttystate.c_lflag |= ICANON;
}
//set the terminal attributes.
tcsetattr(STDIN_FILENO, TCSANOW, &ttystate);
}
static std::string get_stringified_time(struct timeval* tv = NULL)
{
struct timeval _tv;
if (tv == NULL)
{
tv = &_tv;
gettimeofday(tv, NULL); // FIXME: Use boost::posix_time
}
time_t t = tv->tv_sec;
struct tm *lt = localtime(&t);
char s[20] = { 0 };
strftime(s, sizeof(s), "%Y/%m/%d %H:%M:%S", lt);
return
std::string(COLOUR_START COLOUR_UNDERLINE COLOUR_END) +
std::string(s) +
boost::str(boost::format(".%06ld") % tv->tv_usec) +
std::string(COLOUR_RESET)
;
}
/***********************************************************************
* Checker thread
**********************************************************************/
void check_thread(uhd::usrp::multi_usrp::sptr usrp)
{
{
std::stringstream ss;
ss << "(" << get_stringified_time() << ") Checker running..." << std::endl;
std::cout << ss.str();
}
while (running)
{
uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked");
if (ref_locked.to_bool() == false) {
std::stringstream ss;
ss << HEADER_WARN"(" << get_stringified_time() << ") " << boost::format("ref_locked: unlocked") << std::endl;
std::cout << ss.str();
}
boost::this_thread::sleep(boost::posix_time::seconds(0) + boost::posix_time::microseconds(1000 * 500)); // MAGIC
}
std::cout << "Checker exiting..." << std::endl;
}
/***********************************************************************
* Benchmark RX Rate
**********************************************************************/
typedef struct RxParams {
size_t samps_per_packet;
size_t samps_per_buff;
uhd::time_spec_t start_time;
double start_time_delay;
double recv_timeout;
bool one_packet_at_a_time;
bool check_recv_time;
double progress_interval;
bool single_packets;
bool size_map;
size_t rx_sample_limit;
std::vector capture_files;
bool set_rx_freq;
double rx_freq;
double rx_freq_delay;
double rx_lo_offset;
bool interleave_rx_file_samples;
bool ignore_late_start;
bool ignore_bad_packets;
bool ignore_timeout;
bool ignore_unexpected_error;
} RX_PARAMS;
static uint64_t recv_samp_count_progress = 0;
static boost::system_time recv_samp_count_progress_update;
static size_t rx_sleep_delay_now = 0;
void benchmark_rx_rate(
uhd::usrp::multi_usrp::sptr usrp,
const std::string &rx_cpu,
uhd::rx_streamer::sptr rx_stream,
RX_PARAMS& params)
{
uhd::set_thread_priority_safe();
boost::mutex::scoped_lock l(begin_rx_mutex);
rx_interrupt_disabler = new boost::this_thread::disable_interruption();
//setup variables and allocate buffer
size_t bytes_per_samp = uhd::convert::get_bytes_per_item(rx_cpu);
std::vector buff(params.samps_per_buff * bytes_per_samp * rx_stream->get_num_channels());
std::vector buffs;
for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++)
buffs.push_back(&buff.front() + (params.samps_per_buff * bytes_per_samp * ch)); //same buffer for each channel
bool had_an_overflow = false;
uhd::time_spec_t last_time;
const double rate = usrp->get_rx_rate();
const double master_clock_rate = usrp->get_master_clock_rate();
uhd::rx_metadata_t md;
if (params.set_rx_freq)
{
if (params.rx_freq_delay == 0)
{
std::cout << boost::format(HEADER_RX"Setting RX freq: %f (LO offset: %f Hz)") % params.rx_freq % params.rx_lo_offset << std::endl;
uhd::tune_request_t tune_request = uhd::tune_request_t(params.rx_freq, params.rx_lo_offset);
for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++)
usrp->set_rx_freq(tune_request, ch);
}
}
std::cout << HEADER_RX"Waiting..." << std::endl;
rx_thread_begin.notify_all();
begin.wait(l);
l.unlock();
{
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") Running..." << std::endl;
std::cout << ss.str();
}
uhd::time_spec_t time_now = usrp->get_time_now();
uhd::time_spec_t diff = time_now - params.start_time;
std::cout << boost::format(HEADER_RX"USRP time difference between right now and start time: %ld ticks (%f seconds)") % diff.to_ticks(rate) % diff.get_real_secs() << std::endl;
uhd::time_spec_t actual_start_time = params.start_time + uhd::time_spec_t(params.start_time_delay);
if (params.start_time_delay >= 0.0)
std::cout << HEADER_RX"Will begin streaming at time " << boost::format("%.6f") % actual_start_time.get_real_secs() << std::endl;
uhd::stream_cmd_t cmd((params.rx_sample_limit == 0) ? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS : uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); // FIXME: The other streaming modes
cmd.num_samps = params.rx_sample_limit;
cmd.time_spec = actual_start_time;
cmd.stream_now = (params.start_time_delay == 0.0);
rx_stream->issue_stream_cmd(cmd);
if (params.set_rx_freq)
{
if (params.rx_freq_delay > 0)
{
std::cout << boost::format(HEADER_RX"Scheduling RX freq in %d seconds: %f (LO offset: %f Hz)") % params.rx_freq_delay % params.rx_freq % params.rx_lo_offset << std::endl;
uhd::time_spec_t tune_time = params.start_time + uhd::time_spec_t(params.rx_freq_delay);
usrp->set_command_time(tune_time);
uhd::tune_request_t tune_request = uhd::tune_request_t(params.rx_freq, params.rx_lo_offset);
for (size_t ch = 0; ch < rx_stream->get_num_channels(); ch++)
usrp->set_rx_freq(tune_request, ch);
usrp->clear_command_time();
}
}
double timeout = params.recv_timeout;
if (cmd.stream_now == false)
timeout += params.start_time_delay;
size_t num_recv_calls = 0;
int64_t cur_timestamp = 0;
boost::system_time time_last_progress;
uint64_t samps_last_progress = 0;
unsigned long long num_rx_samps_single_chan = 0;
//while (not boost::this_thread::interruption_requested()){
try {
while (running)
{
if (rx_sleep_delay_now > 0) // UNSYNC'd
{
size_t delay = rx_sleep_delay_now;
rx_sleep_delay_now = 0;
usleep(delay);
}
//try {
size_t recv_samps = rx_stream->recv(buffs, params.samps_per_buff, md, timeout, params.one_packet_at_a_time);
++num_recv_calls;
if (params.progress_interval > 0.0)
{
if (num_recv_calls == 1)
{
time_last_progress = boost::get_system_time();
//samps_last_progress = recv_samps;
}
else
{
samps_last_progress += recv_samps;
boost::system_time time_now = boost::get_system_time();
boost::posix_time::time_duration update_diff = time_now - time_last_progress;
if (((double)update_diff.ticks() / (double)TICKS_PER_SEC) >= params.progress_interval)
{
double d = ((double)samps_last_progress * (double)TICKS_PER_SEC) / ((double)update_diff.ticks());
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") " << boost::format("%.6f Msps") % (d/1e6) << std::endl;
std::cout << ss.str();
time_last_progress = time_now;
samps_last_progress = 0;
}
}
}
if (recv_samps > 0)
{
if ((num_recv_calls == 1) && (cmd.stream_now == false))
std::cout << HEADER_RX"(" << get_stringified_time() << ") Received first packet after delayed start with time " << boost::format("%.6f") % md.time_spec.get_real_secs() << std::endl;
if (params.check_recv_time) {
int64_t timestamp = md.time_spec.to_ticks(rate);
if ((cur_timestamp != 0) && (cur_timestamp != timestamp)) {
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") ";
ss << boost::format("TS: %lld, expected: %lld (diff: %lld)") % timestamp % cur_timestamp % (timestamp - cur_timestamp) << std::endl;
std::cout << ss.str();
}
cur_timestamp = timestamp + recv_samps;
}
if (params.size_map)
{
// FIXME
}
timeout = params.recv_timeout;
num_rx_samps_single_chan += recv_samps;
num_rx_samps += recv_samps * rx_stream->get_num_channels();
if ((params.rx_sample_limit > 0) && (num_rx_samps_single_chan == params.rx_sample_limit))
{
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") ";
ss << boost::format("Received all %lu requested samples") % params.rx_sample_limit << std::endl;
std::cout << ss.str();
break;
}
{
boost::mutex::scoped_lock lock(last_rx_md_mutex);
last_rx_md = md;
last_rx_samps = recv_samps;
recv_samp_count_progress += recv_samps;
recv_samp_count_progress_update = boost::get_system_time();
recv_done.notify_one();
}
if (params.capture_files.empty() == false)
{
size_t channel_count = rx_stream->get_num_channels();
if ((channel_count == 1) || ((channel_count > 1) && (params.capture_files.size() == 1)))
{
if (params.interleave_rx_file_samples)
{
for (size_t i = 0; i < recv_samps; ++i)
{
for (size_t j = 0; j < channel_count; ++j)
{
params.capture_files[0]->write((const char*)buffs[j] + (bytes_per_samp * i), bytes_per_samp);
}
}
}
else
{
for (size_t i = 0; i < channel_count; ++i)
{
size_t num_bytes = recv_samps * bytes_per_samp;
params.capture_files[0]->write((const char*)buffs[i], num_bytes);
}
}
}
else
{
for (size_t n = 0; n < channel_count; ++n)
{
size_t num_bytes = recv_samps * bytes_per_samp;
params.capture_files[n]->write((const char*)buffs[n], num_bytes);
}
}
}
}
//}
//catch (...) {
/* apparently, the boost thread interruption can sometimes result in
throwing exceptions not of type boost::exception, this catch allows
this thread to still attempt to issue the STREAM_MODE_STOP_CONTINUOUS
*/
// break;
//}
//handle the error codes
switch(md.error_code)
{
case uhd::rx_metadata_t::ERROR_CODE_NONE:
{
if (had_an_overflow)
{
had_an_overflow = false;
num_dropped_samps += (md.time_spec - last_time).to_ticks(rate); // FIXME: Check this as 'num_dropped_samps' has come out -ve
}
break;
}
// ERROR_CODE_OVERFLOW can indicate overflow or sequence error
case uhd::rx_metadata_t::ERROR_CODE_OVERFLOW: // 'recv_samps' should be 0
last_time = md.time_spec;
had_an_overflow = true;
#if HAS_RX_METADATA_OUT_OF_SEQUENCE
// check out_of_sequence flag to see if it was a sequence error or overflow
if (!md.out_of_sequence)
#endif // HAS_RX_METADATA_OUT_OF_SEQUENCE
num_overflows++;
break;
case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT:
{
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") ";
ss << boost::format("Timeout") << std::endl;
std::cout << ss.str();
if (params.ignore_timeout == false)
sig_int_handler(-1);
break;
}
case uhd::rx_metadata_t::ERROR_CODE_LATE_COMMAND:
{
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") ";
ss << boost::format("Late command") << std::endl;
std::cout << ss.str();
if (params.ignore_late_start == false)
sig_int_handler(-1);
break;
}
case uhd::rx_metadata_t::ERROR_CODE_BAD_PACKET:
{
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") ";
ss << boost::format("Bad packet") << std::endl;
std::cout << ss.str();
if (params.ignore_bad_packets == false)
sig_int_handler(-1);
break;
}
default:
{
std::stringstream ss;
ss << HEADER_RX"(" << get_stringified_time() << ") ";
ss << (boost::format("Unexpected error (code: %d)") % md.error_code) << std::endl;
std::cout << ss.str();
if (params.ignore_unexpected_error == false)
sig_int_handler(-1);
break;
}
}
}
}
catch (const std::runtime_error& e)
{
std::cout << HEADER_RX"Caught exception:" << e.what() << std::endl;
}
catch (...)
{
std::cout << HEADER_RX"Caught unhandled exception" << std::endl;
}
if (params.rx_sample_limit == 0)
{
std::cout << HEADER_RX"Stopping streaming..." << std::endl;
rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
}
if (params.capture_files.empty() == false)
{
std::cout << HEADER_RX"Closing capture files..." << std::endl;
for (size_t n = 0; n < params.capture_files.size(); ++n)
delete params.capture_files[n];
params.capture_files.clear();
}
l.lock();
rx_thread_finished = true;
if (rx_interrupt_disabler)
{
delete rx_interrupt_disabler;
rx_interrupt_disabler = NULL;
}
std::cout << HEADER_RX"Exiting..." << std::endl;
rx_thread_complete.notify_all();
}
/***********************************************************************
* Benchmark TX Rate
**********************************************************************/
static size_t tx_sleep_delay_now = 0;
typedef struct TxParams {
uhd::time_spec_t start_time;
double send_timeout;
double send_start_delay;
bool use_tx_eob;
bool use_tx_timespec;
bool tx_rx_sync;
bool send_final_eob;
double progress_interval;
bool use_relative_timestamps;
bool follow_rx_timestamps;
double tx_time_offset;
double rx_rate;
size_t tx_burst_length;
size_t tx_flush_length;
double tx_full_scale;
double tx_time_between_bursts;
bool recover_late;
bool set_tx_freq;
double tx_freq;
double tx_freq_delay;
double tx_lo_offset;
} TX_PARAMS;
void benchmark_tx_rate(
uhd::usrp::multi_usrp::sptr usrp,
const std::string &tx_cpu,
uhd::tx_streamer::sptr tx_stream,
TX_PARAMS& params
)
{
uhd::set_thread_priority_safe();
boost::mutex::scoped_lock l(begin_tx_mutex);
tx_interrupt_disabler = new boost::this_thread::disable_interruption();
//setup variables and allocate buffer
const double rate = usrp->get_tx_rate();
const size_t max_samps_per_packet = tx_stream->get_max_num_samps();
if (params.tx_burst_length == 0)
{
params.tx_burst_length = max_samps_per_packet - params.tx_flush_length;
}
size_t total_length = params.tx_burst_length + params.tx_flush_length;
uhd::time_spec_t packet_time = uhd::time_spec_t::from_ticks(total_length, rate);
size_t total_packet_count = (total_length / max_samps_per_packet) + ((total_length % max_samps_per_packet) ? 1 : 0);
if ((params.use_tx_eob) && (params.tx_time_between_bursts > 0))
packet_time += uhd::time_spec_t(params.tx_time_between_bursts);
size_t max_late_count = (size_t)(rate / (double)packet_time.to_ticks(rate)) * total_packet_count * tx_stream->get_num_channels(); // Also need to take into account number of radios
// Will be much higher L values (e.g. 31K) on e.g. B200 when entire TX pipeline is full of late packets (large size due to total TX buffering throughout transport & DSP)
std::cout << boost::format(HEADER_TX"TX burst length: %lu samples (flush: %lu samples), total: %lu (%f us)") % params.tx_burst_length % params.tx_flush_length % total_length % (1e6 * (double)total_length / rate) << std::endl;
std::cout << boost::format(HEADER_TX"Max late packet count: %lu") % max_late_count << std::endl;
std::vector buffs;
std::vector buff(max_samps_per_packet * uhd::convert::get_bytes_per_item(tx_cpu), 0);
float* pResponse = NULL;
if (tx_cpu == "fc32")
{
std::cout << HEADER_TX"Generating ramp" << std::endl;
pResponse = new float[total_length * 2];
for (int i = 0; i < (params.tx_burst_length * 2); i += 2)
{
pResponse[i+0] = (params.tx_full_scale) * ((double)i / (double)(params.tx_burst_length * 2));
pResponse[i+1] = 0.0f;
}
for (int i = (params.tx_burst_length * 2); i < (total_length * 2); ++i)
{
pResponse[i] = 0.0f;
}
for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++)
{
buffs.push_back(pResponse);
}
}
else
{
std::cout << HEADER_TX"Generating silence" << std::endl;
for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++)
{
buffs.push_back(&buff.front()); //same buffer for each channel
}
}
if (params.set_tx_freq)
{
if (params.tx_freq_delay > 0) // FIXME: Experiment to see whether this will also experience head-of-line blocking due to SPI xact fill-up (as what happened with RX)
{
std::cout << boost::format(HEADER_TX"Scheduling TX freq in %d seconds: %f (LO offset: %f Hz)") % params.tx_freq_delay % params.tx_freq % params.tx_lo_offset << std::endl;
uhd::time_spec_t tune_time = params.start_time + uhd::time_spec_t(params.tx_freq_delay);
usrp->set_command_time(tune_time);
}
else
std::cout << boost::format(HEADER_TX"Setting TX freq: %f (LO offset: %f Hz)") % params.tx_freq % params.tx_lo_offset << std::endl;
uhd::tune_request_t tune_request = uhd::tune_request_t(params.tx_freq, params.tx_lo_offset);
for (size_t ch = 0; ch < tx_stream->get_num_channels(); ch++)
usrp->set_tx_freq(tune_request, ch);
if (params.tx_freq_delay > 0)
{
usrp->clear_command_time();
}
}
if ((params.use_tx_timespec) && (params.tx_rx_sync == false)) {
uhd::time_spec_t time_now = usrp->get_time_now();
uhd::time_spec_t diff = time_now - params.start_time;
std::cout << boost::format(HEADER_TX"Now - start time: %ld ticks (%f seconds)") % diff.to_ticks(rate) % diff.get_real_secs() << std::endl;
}
uhd::tx_metadata_t md;
//md.start_of_burst; // Currently not used on any HW
md.end_of_burst = params.use_tx_eob;
double timeout = params.send_timeout;
boost::system_time time_last_progress;
boost::system_time time_first_send;
uint64_t samps_last_progress = 0;
std::cout << HEADER_TX"Waiting..." << std::endl;
tx_thread_begin.notify_all();
begin.wait(l);
l.unlock();
uhd::time_spec_t last_recv_time;
if ((params.use_tx_timespec)/* && (params.send_start_delay > 0)*/) {
if ((params.tx_rx_sync) || (params.follow_rx_timestamps)) {
boost::mutex::scoped_lock lock(last_rx_md_mutex);
{
std::stringstream ss;
ss << HEADER_TX"(" << get_stringified_time() << ") Waiting for first RX packet..." << std::endl;
std::cout << ss.str();
}
recv_done.wait(lock);
{
std::stringstream ss;
ss << HEADER_TX"(" << get_stringified_time() << ") First RX packet arrived with time "<< boost::format("%.6f") % last_rx_md.time_spec.get_real_secs() << std::endl;
std::cout << ss.str();
}
last_recv_time = last_rx_md.time_spec;
if (params.tx_rx_sync)
params.start_time = last_rx_md.time_spec + uhd::time_spec_t(params.tx_time_offset);
}
else
{
std::stringstream ss;
ss << HEADER_TX"(" << get_stringified_time() << ") "<< boost::format("TX will start %lld ticks in the future") % uhd::time_spec_t(params.send_start_delay).to_ticks(rate) << std::endl;
std::cout << ss.str();
params.start_time += uhd::time_spec_t(params.send_start_delay);
}
md.time_spec = params.start_time;
md.has_time_spec = true;
//timeout += params.send_start_delay; // In case we fill up HW buf with large initial send buffer
}
{
std::stringstream ss;
ss << HEADER_TX"(" << get_stringified_time() << ") Running..." << std::endl;
std::cout << ss.str();
}
// Important note:
// When idle, HW will attempt to honour first packet's time_spec
// If it's late, host will see L and HW will either drop it or send the next packet (depending on policy)
// Once the first packet has been transmitted, and there is no EOB, the next packet will be sent
// immediately following it, regardless of its time_spec
// If there is an EOB, the HW is returned to idle
// If there is an underrun, the HW is returned to idle
// o Free-run
// o Delayed start after common start
// o Delayed start after first RX
// o Calculate own TX time based on samples sent (will result in Ls)
// - Why does this produce Ls with EOB enabled? Because (at least on B200) there is a finite state-switch time, so it won't be able to service the very next packet every time (e.g. burst separate of 1e-6 works)
// o Follow RX + N -> (really above) -> relative sync'd (calculated from samples count received)
// * Wait for next slot -> sync'd & not relative (use % (mod) for slot)
// o Detect Ls -> re-sync relative
size_t loops_to_send = 0;
uhd::time_spec_t next;
boost::system_time time_now = boost::get_system_time();
boost::system_time last_late_check_time = time_now;
unsigned long long last_num_late_packets = 0;
bool resync_time = false;
uhd::time_spec_t follow_time_target = md.time_spec;
//while (not boost::this_thread::interruption_requested()){
while (running)
{
if (tx_sleep_delay_now) // UNSYNC'd
{
size_t delay = tx_sleep_delay_now;
tx_sleep_delay_now = 0;
usleep(delay);
}
if (params.follow_rx_timestamps)
{
boost::mutex::scoped_lock lock(last_rx_md_mutex);
uhd::time_spec_t diff = last_rx_md.time_spec - last_recv_time;
if ((resync_time) || /*(num_send_calls == 0) || */((diff.get_real_secs() == 0) && (md.time_spec >= follow_time_target)))
{
recv_done.wait(lock);
if (resync_time)
{
resync_time = false;
last_recv_time = last_rx_md.time_spec;
md.time_spec = last_rx_md.time_spec + uhd::time_spec_t(params.tx_time_offset);
follow_time_target = md.time_spec;
continue;
}
diff = last_rx_md.time_spec - last_recv_time;
}
if ((diff.get_real_secs() > 0) && (md.time_spec >= follow_time_target))
{
follow_time_target = md.time_spec + diff;
last_recv_time = last_rx_md.time_spec;
}
}
size_t nsent = tx_stream->send(buffs, total_length, md, timeout);
++num_send_calls;
time_now = boost::get_system_time();
if (params.progress_interval > 0.0)
{
if (num_send_calls == 1)
{
time_first_send = time_last_progress = boost::get_system_time();
//samps_last_progress = nsent;
}
else
{
samps_last_progress += nsent;
//boost::system_time time_now = boost::get_system_time();
boost::posix_time::time_duration update_diff = time_now - time_last_progress;
if (((double)update_diff.ticks() / (double)TICKS_PER_SEC) >= params.progress_interval)
{
double d = ((double)samps_last_progress * (double)TICKS_PER_SEC) / ((double)update_diff.ticks());
std::stringstream ss;
ss << HEADER_TX"(" << get_stringified_time() << ") " << boost::format("%.6f Msps") % (d/1e6) << std::endl;
std::cout << ss.str();
time_last_progress = time_now;
samps_last_progress = 0;
}
}
}
if (nsent == 0)
{
if ((params.use_tx_timespec) && (params.send_start_delay > 0))
{
//boost::system_time time_now = boost::get_system_time();
boost::posix_time::time_duration diff = time_now - time_first_send;
if (((double)diff.ticks() / (double)TICKS_PER_SEC) >= (timeout + params.send_start_delay))
{
// TX chain has filled after delayed start
}
}
else
{
// TX chain has filled after immediate start
}
}
else
{
if (nsent != total_length)
{
std::stringstream ss;
ss << HEADER_WARN"(" << get_stringified_time() << ") " << boost::format("Only sent %lu of %lu samples") % nsent % total_length << std::endl;
std::cout << ss.str();
}
if ((params.use_relative_timestamps) && (params.use_tx_timespec) && (md.has_time_spec))
{
md.time_spec += uhd::time_spec_t::from_ticks(nsent, rate);
if (params.tx_time_between_bursts)
md.time_spec += uhd::time_spec_t(params.tx_time_between_bursts);
}
}
if ((num_tx_samps == 0) && (nsent > 0))
{
if (md.has_time_spec)
{
std::stringstream ss;
ss << HEADER_TX"(" << get_stringified_time() << ") ";
ss << boost::format("First send completed having sent %d samples") % nsent << std::endl;
std::cout << ss.str();
}
}
num_tx_samps += nsent * tx_stream->get_num_channels();
if ((params.use_tx_timespec == false) && (md.has_time_spec))
md.has_time_spec = false;
if (params.recover_late)
{
boost::posix_time::time_duration late_check_diff = time_now - last_late_check_time;
if (((double)late_check_diff.ticks() / (double)TICKS_PER_SEC) >= 1.0) // MAGIC
{
// UNSYNC'd
// FIXME: Why doesn't num_late_packets go up with B200?
unsigned long long diff = /*num_late_packets*/num_late_packets_msg - last_num_late_packets;
if (diff >= max_late_count)
{
std::stringstream ss;
ss << HEADER_TX"(" << get_stringified_time() << ") ";
ss << boost::format("Exceeded max late packet threshold: %llu >= %llu") % diff % max_late_count << std::endl;
std::cout << ss.str();
if ((params.tx_rx_sync) && (params.follow_rx_timestamps))
resync_time = true;
else
md.time_spec = usrp->get_time_now() + uhd::time_spec_t(params.tx_time_offset);
}
last_num_late_packets = /*num_late_packets*/num_late_packets_msg;
last_late_check_time = time_now;
}
}
}
if (params.send_final_eob)
{
std::cout << HEADER_TX"Sending final EOB..." << std::endl;
//send a mini EOB packet
md.has_time_spec = false;
md.end_of_burst = true;
tx_stream->send(buffs, 0, md);
}
else
std::cout << HEADER_TX"Not sending final EOB" << std::endl;
if (pResponse)
{
delete [] pResponse;
pResponse = NULL;
}
l.lock();
tx_thread_finished = true;
if (tx_interrupt_disabler)
{
delete tx_interrupt_disabler;
tx_interrupt_disabler = NULL;
}
std::cout << HEADER_TX"Exiting..." << std::endl;
tx_thread_complete.notify_all();
}
void benchmark_tx_rate_async_helper(
uhd::tx_streamer::sptr tx_stream,
double timeout)
{
boost::mutex::scoped_lock l(begin_tx_async_begin);
tx_async_interrupt_disabler = new boost::this_thread::disable_interruption();
std::cout << HEADER_AS"Running..." << std::endl;
//setup variables and allocate buffer
uhd::async_metadata_t async_md;
l.unlock();
bool skip = false;
//while (not boost::this_thread::interruption_requested()){
while (running) {
if (not tx_stream->recv_async_msg(async_md, (skip ? 0 : timeout)))
{
//std::cout << "-" << std::endl;
skip = false;
continue;
}
skip = true;
//std::cout << "Async event code: " << async_md.event_code << std::endl;
//handle the error codes
switch(async_md.event_code)
{
case uhd::async_metadata_t::EVENT_CODE_BURST_ACK:
num_tx_acks++;
return;
case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW:
num_underflows++;
break;
case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET:
num_underflows_in_packet++;
break;
case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR:
num_seq_errors++;
break;
case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST:
num_seq_errors_in_burst++;
break;
case uhd::async_metadata_t::EVENT_CODE_TIME_ERROR:
num_late_packets++;
break;
default:
std::cerr << HEADER_AS"Event code: " << async_md.event_code << std::endl;
std::cerr << HEADER_AS"Unexpected event on async recv, continuing..." << std::endl;
break;
}
}
l.lock();
tx_async_thread_finished = true;
if (tx_async_interrupt_disabler)
{
delete tx_async_interrupt_disabler;
tx_async_interrupt_disabler = NULL;
}
std::cout << HEADER_AS"Exiting..." << std::endl;
tx_async_thread_complete.notify_all();
}
std::vector get_channels(const std::string& channel_list, size_t max = -1)
{
std::vector channel_strings;
std::vector channel_nums;
if (channel_list.size() > 0)
boost::split(channel_strings, channel_list, boost::is_any_of("\"',"));
for (size_t ch = 0; ch < channel_strings.size(); ch++)
{
size_t chan = boost::lexical_cast(channel_strings[ch]);
if ((max >= 0) && (chan >= max)) {
throw std::runtime_error("Invalid channel(s) specified.");
}
else {
channel_nums.push_back(boost::lexical_cast(channel_strings[ch]));
}
}
return channel_nums;
}
/***********************************************************************
* Main code + dispatcher
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args;
double duration;
double rate = 1e6;
double rx_rate = rate, tx_rate = rate;
std::string rx_otw, tx_otw;
std::string rx_cpu, tx_cpu;
std::string mode;
std::string channel_list = "0";
std::string rx_channel_list/* = channel_list*/, tx_channel_list/* = channel_list*/;
size_t samps_per_buff;
size_t samps_per_packet;
double master_clock_rate;
double recv_timeout, send_timeout;
double recv_start_delay, send_start_delay;
double tx_async_timeout;
double interrupt_timeout;
double progress_interval = 0.0;
double rx_progress_interval = progress_interval, tx_progress_interval = progress_interval;
double tx_time_offset;
size_t tx_burst_length; // Optionally in time (not samples)
size_t tx_flush_length;
size_t interactive_sleep;
double tx_full_scale;
double tx_freq = 0, tx_freq_init = 0;
double rx_freq = 0, rx_freq_init = 0;
double rx_lo_offset, tx_lo_offset;
double tx_freq_delay = 0, rx_freq_delay = 0;
double tx_gain = 0, rx_gain = 0;
double tx_time_between_bursts;
size_t tx_sleep_delay;
size_t rx_sleep_delay;
size_t rx_sample_limit;
std::string rx_file;
std::string time_source, clock_source;
std::string tx_ant, rx_ant;
std::string tx_subdev, rx_subdev;
std::string set_time_mode;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "single uhd device address args")
("duration", po::value(&duration)->default_value(0.0), "duration for the test in seconds (0 = forever)")
("rate", po::value(&rate)->default_value(rate), "specify to perform a TX & RX rate test (sps)")
("rx-rate", po::value(&rx_rate), "specify to perform a RX rate test (sps)")
("tx-rate", po::value(&tx_rate), "specify to perform a TX rate test (sps)")
("rx-subdev", po::value(&rx_subdev)->default_value(""), "set RX sub-device specification")
("tx-subdev", po::value(&tx_subdev)->default_value(""), "set TX sub-device specification")
("rx-otw", po::value(&rx_otw)->default_value("sc16"), "specify the over-the-wire sample mode for RX")
("tx-otw", po::value(&tx_otw)->default_value("sc16"), "specify the over-the-wire sample mode for TX")
("rx-cpu", po::value(&rx_cpu)->default_value("fc32"), "specify the host/cpu sample mode for RX")
("tx-cpu", po::value(&tx_cpu)->default_value("fc32"), "specify the host/cpu sample mode for TX")
("mode", po::value(&mode)->default_value("none"), "multi-channel sync mode option: none, mimo (mimo overrides time and clock source")
("time", po::value(&time_source), "time reference (external, mimo)")
("clock", po::value(&clock_source), "clock reference (internal, external, mimo)")
("channels", po::value(&channel_list)/*->default_value(channel_list)*/, "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("rx-channels", po::value(&rx_channel_list), "which RX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("tx-channels", po::value(&tx_channel_list), "which TX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("spp", po::value(&samps_per_packet)->default_value(0), "samples per packet (0: use default)")
("spb", po::value(&samps_per_buff)->default_value(0), "samples per buffer (0: use max samples per packet)")
("mcr", po::value(&master_clock_rate)->default_value(0.0), "master clock rate (0: use default)")
("rx-timeout", po::value(&recv_timeout)->default_value(0.1), "recv timeout")
("tx-timeout", po::value(&send_timeout)->default_value(0.1), "send timeout")
("tx-async-timeout", po::value(&tx_async_timeout)->default_value(0.1), "recv_async_msg timeout")
("rx-start-delay", po::value(&recv_start_delay)->default_value(0.0), "recv start delay (seconds)")
("tx-start-delay", po::value(&send_start_delay)->default_value(0.0), "send start delay (seconds)")
("interrupt-timeout", po::value(&interrupt_timeout)->default_value(0.0), "time before re-enabling boost thread interruption")
("progress-interval", po::value(&progress_interval)->default_value(progress_interval), "seconds between bandwidth updates (0 disables)")
("rx-progress-interval", po::value(&rx_progress_interval), "seconds between RX bandwidth updates (0 disables)")
("tx-progress-interval", po::value(&tx_progress_interval), "seconds between TX bandwidth updates (0 disables)")
("tx-offset", po::value(&tx_time_offset)->default_value(0.0), "seconds that TX should be in front of RX when following")
("tx-length", po::value(&tx_burst_length)->default_value(0), "TX burst length in samples (0: maximum packet size)")
("tx-flush", po::value(&tx_flush_length)->default_value(0), "samples to flush TX with after burst")
("tx-burst-separation", po::value(&tx_time_between_bursts), "seconds between TX bursts")
("interactive-sleep", po::value(&interactive_sleep)->default_value(10), "interactive sleep period (ms)")
("tx-full-scale", po::value(&tx_full_scale)->default_value(0.7), "full-scale TX sample value")
("tx-freq", po::value(&tx_freq), "TX frequency (Hz)")
("tx-lo-offset", po::value(&tx_lo_offset)->default_value(0.0), "TX LO offset (Hz)")
("tx-freq-init", po::value(&tx_freq_init), "initial TX frequency before realising main TX frequency (Hz)")
("tx-freq-delay", po::value(&tx_freq_delay), "seconds after which to set main TX frequency (Hz)")
("rx-freq", po::value(&rx_freq), "RX frequency (Hz)")
("rx-lo-offset", po::value(&rx_lo_offset)->default_value(0.0), "RX LO offset (Hz)")
("rx-freq-init", po::value(&rx_freq_init), "initial RX frequency before realising main RX frequency (Hz)")
("rx-freq-delay", po::value(&rx_freq_delay), "seconds after which to set main RX frequency (Hz)")
("tx-gain", po::value(&tx_gain), "TX gain (Hz)")
("rx-gain", po::value(&rx_gain), "RX gain (Hz)")
("tx-ant", po::value(&tx_ant), "TX antenna")
("rx-ant", po::value(&rx_ant), "RX antenna")
("tx-sleep-delay", po::value(&tx_sleep_delay)->default_value(1000), "TX sleep delay (us)")
("rx-sleep-delay", po::value(&rx_sleep_delay)->default_value(1000), "RX sleep delay (us)")
("rx-sample-limit", po::value(&rx_sample_limit)->default_value(0), "total number of samples to receive (0 implies continuous streaming)")
("rx-file", po::value(&rx_file)->default_value(""), "RX capture file path")
("set-time", po::value(&set_time_mode)->default_value(""), "set mode (now, next_pps, unknown_pps)")
//("allow-late", "allow late bursts")
("drop-late", "drop late bursts")
("still-set-rates", "still set rate on unused direction")
("rx-single-packets", "receive one packet at a time")
("check-rx-time", "check receive timespec rounding")
("tx-eob", "use EOB")
("tx-timespec", "use TX timespec")
("tx-rx-sync", "sync TX timestamps to RX")
("final-eob", "send final EOB")
("relative-tx", "use relative TX timestamps")
("tx-follows-rx", "TX timestamps follow RX")
("rx-size-map", "collect size map of RX packets (implies receive one packet at a time)")
("interactive", "interactive mode")
("recover-late", "recover from excessive late TX packets")
("disable-async", "disable the async message thread")
("interleave-rx-file-samples", "interleave individual samples (default is interleaving buffers)")
("ignore-late-start", "continue receiving even if stream command was late")
("ignore-bad-packets", "continue receiving after a bad packet")
("ignore-timeout", "continue receiving after timeout")
("ignore-unexpected", "continue receiving after unexpected error")
// record TX/RX times
// Optional interruption
// simulate u / o at random / pulses
// exit on O / other error
// suppress msgs
// recv/send jitter
// capture each channel to separate files (if format string is spec'd)
// check sensors
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
if (vm.count("rx-rate") == 0)
rx_rate = rate;
if (vm.count("tx-rate") == 0)
tx_rate = rate;
//if (vm.count("rx-channels") == 0)
// rx_channel_list = channel_list;
//if (vm.count("tx-channels") == 0)
// tx_channel_list = channel_list;
if ((vm.count("rx-channels") == 0) && (vm.count("tx-channels") == 0))
rx_channel_list = tx_channel_list = channel_list;
if (vm.count("rx-progress-interval") == 0)
rx_progress_interval = progress_interval;
if (vm.count("tx-progress-interval") == 0)
tx_progress_interval = progress_interval;
//print the help message
if (vm.count("help") or ((rx_rate + tx_rate) == 0)){
std::cout << boost::format("UHD Kitchen Sink %s") % desc << std::endl;
std::cout <<
" By default, performs single-channel full-duplex test at 1 Msps with continuous streaming.\n"
" Specify --channels to set RX & TX,\n"
" or just --rx-channels and/or --tx-channels.\n"
" Specify --rate to set both RX & TX.\n"
" Specify --rx-rate to set custom RX rate.\n"
" Specify --tx-rate to set custom TX rate.\n"
<< std::endl;
return ~0;
}
bool allow_late_bursts = (/*vm.count("allow-late") > 0*/vm.count("drop-late") == 0);
bool still_set_rates = (vm.count("still-set-rates") > 0);
bool recv_single_packets = (vm.count("rx-single-packets") > 0);
bool check_recv_time = (vm.count("check-rx-time") > 0);
bool use_tx_eob = (vm.count("tx-eob") > 0);
bool use_tx_timespec = (vm.count("tx-timespec") > 0);
bool tx_rx_sync = (vm.count("tx-rx-sync") > 0);
bool send_final_eob = (vm.count("final-eob") > 0);
bool use_relative_tx_timestamps = (vm.count("relative-tx") > 0);
bool tx_follows_rx = (vm.count("tx-follows-rx") > 0);
bool rx_size_map = (vm.count("rx-size-map") > 0);
bool interactive = (vm.count("interactive") > 0);
bool recover_late = (vm.count("recover-late") > 0);
bool enable_async = (vm.count("disable-async") == 0);
bool interleave_rx_file_samples = (vm.count("interleave-rx-file-samples") > 0);
bool ignore_late_start = (vm.count("ignore-late-start") > 0);
bool ignore_bad_packets = (vm.count("ignore-bad-packets") > 0);
bool ignore_timeout = (vm.count("ignore-timeout") > 0);
bool ignore_unexpected_error = (vm.count("ignore-unexpected") > 0);
boost::posix_time::time_duration interrupt_timeout_duration(boost::posix_time::seconds(long(interrupt_timeout)) + boost::posix_time::microseconds(long((interrupt_timeout - floor(interrupt_timeout))*1e6)));
if (interactive)
{
//WINDOW* window = initscr();
//newterm(NULL, stdin, NULL);
//cbreak();
//noecho();
//nonl();
//intrflush(window, FALSE);
//keypad(window, TRUE); // Enable function keys, arrow keys, ...
//nodelay(window, 0);
//timeout(interactive_sleep);
set_nonblock(true);
}
try
{
//create a usrp device
uhd::device_addrs_t device_addrs = uhd::device::find(args);
if (not device_addrs.empty() and device_addrs.at(0).get("type", "") == "usrp1"){
std::cerr << HEADER_WARN"Benchmark results will be inaccurate on USRP1 due to insufficient hardware features.\n" << std::endl;
}
std::cout << boost::format(HEADER "Creating the usrp device with args \"%s\"") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << std::endl;
std::cout << boost::format(HEADER "Using Device: %s") % usrp->get_pp_string() << std::endl;
//std::vector channel_nums = get_channels(channel_list);
std::vector rx_channel_nums = get_channels((/*rx_channel_list.size() ? */rx_channel_list/* : channel_list*/), usrp->get_rx_num_channels());
std::vector tx_channel_nums = get_channels((/*tx_channel_list.size() ? */tx_channel_list/* : channel_list*/), usrp->get_tx_num_channels());
if ((rx_channel_nums.size() == 0) && (tx_channel_nums.size() == 0))
{
std::cout << HEADER_ERROR "Need at least one RX or one TX channel to run" << std::endl;
return ~0;
}
bool rx_filename_has_format = false;
if (rx_channel_nums.size() > 0)
{
std::string str0;
try
{
str0 = boost::str(boost::format(rx_file) % 0);
rx_filename_has_format = true;
}
catch (...)
{
}
bool format_different = false;
try
{
std::string str1(boost::str(boost::format(rx_file) % 1));
format_different = (str0 != str1);
}
catch (...)
{
}
if ((rx_filename_has_format) && (format_different == false))
{
std::cout << HEADER_ERROR "Multi-channel RX capture filename format did not produce unique names" << std::endl;
return ~0;
}
}
if ((tx_rx_sync) || (tx_follows_rx))
{
if (tx_channel_nums.size() == 0)
{
std::cout << HEADER_ERROR "Cannot sync/follow TX to RX without any TX channels" << std::endl;
return ~0;
}
if (rx_channel_nums.size() == 0)
{
std::cout << HEADER_ERROR "Cannot sync/follow TX to RX without any RX channels" << std::endl;
return ~0;
}
}
if (master_clock_rate > 0)
{
std::cout << boost::format(HEADER "Requested master clock rate: %f") % master_clock_rate << std::endl;
usrp->set_master_clock_rate(master_clock_rate);
}
std::cout << boost::format(HEADER "Actual master clock rate: %f") % usrp->get_master_clock_rate() << std::endl;
if (mode == "mimo") // FIXME: Warn if time/clock sources manually set
{
usrp->set_clock_source("mimo", 0); // FIXME: Check this (that it's specific to mboard 0)
usrp->set_time_source("mimo", 0);
std::cout << HEADER "Sleeping after setting clock & time sources" << std::endl;
boost::this_thread::sleep(boost::posix_time::seconds(1)); // MAGIC
}
else
{
if (clock_source.empty() == false) // Set clock first (stable clock for PPS registration)
{
usrp->set_clock_source(clock_source);
std::cout << boost::format(HEADER "Clock source set to: %s") % clock_source << std::endl;
}
if (time_source.empty() == false)
{
usrp->set_time_source(time_source);
std::cout << boost::format(HEADER "Time source set to: %s") % time_source << std::endl;
}
if (set_time_mode.empty() == false)
{
if (set_time_mode == "now")
{
usrp->set_time_now(uhd::time_spec_t(0.0));
std::cout << boost::format(HEADER "Time set now") << std::endl;
}
else if (set_time_mode == "next_pps")
{
usrp->set_time_next_pps(uhd::time_spec_t(0.0));
sleep(1);
std::cout << boost::format(HEADER "Time set next PPS") << std::endl;
}
else if (set_time_mode == "unknown_pps")
{
usrp->set_time_unknown_pps(uhd::time_spec_t(0.0));
std::cout << boost::format(HEADER "Time set unknown PPS") << std::endl;
}
else
{
std::cout << HEADER_WARN"Cannot set time with unknown mode: " << set_time_mode << std::endl;
}
}
}
if ((rx_channel_nums.size() > 0) || (still_set_rates))
{
if (rx_subdev.empty() == false)
{
usrp->set_rx_subdev_spec(rx_subdev);
std::cout << boost::format(HEADER_RX"RX sub-device spec: %s") % usrp->get_rx_subdev_spec().to_string() << std::endl;
}
usrp->set_rx_rate(rx_rate);
double actual_rx_rate = usrp->get_rx_rate();
std::cout << boost::format(HEADER_RX"Actual RX rate: %f") % actual_rx_rate << std::endl;
if (rx_ant.empty() == false)
{
std::cout << boost::format(HEADER_RX"Selecting RX antenna: %s") % rx_ant << std::endl;
for (size_t ch = 0; ch < rx_channel_nums.size(); ch++)
usrp->set_rx_antenna(rx_ant, ch);
}
if (vm.count("rx-freq-init") > 0)
{
std::cout << boost::format(HEADER_RX"Setting initial RX freq: %f (LO offset: %f Hz)") % rx_freq_init % rx_lo_offset << std::endl;
uhd::tune_request_t tune_request = uhd::tune_request_t(rx_freq_init, rx_lo_offset);
for (size_t ch = 0; ch < rx_channel_nums.size(); ch++)
usrp->set_rx_freq(tune_request, ch);
}
if (vm.count("rx-gain") > 0)
{
std::cout << boost::format(HEADER_RX"Setting RX gain: %f") % rx_gain << std::endl;
for (size_t ch = 0; ch < rx_channel_nums.size(); ch++)
usrp->set_rx_gain(rx_gain, ch);
}
}
if ((tx_channel_nums.size() > 0) || (still_set_rates))
{
if (tx_subdev.empty() == false)
{
usrp->set_tx_subdev_spec(tx_subdev);
std::cout << boost::format(HEADER_TX"TX sub-device spec: %s") % usrp->get_tx_subdev_spec().to_string() << std::endl;
}
usrp->set_tx_rate(tx_rate);
double actual_tx_rate = usrp->get_tx_rate();
std::cout << boost::format(HEADER_TX"Actual TX rate: %f") % actual_tx_rate << std::endl;
if (tx_ant.empty() == false)
{
std::cout << boost::format(HEADER_TX"Selecting TX antenna: %s") % tx_ant << std::endl;
for (size_t ch = 0; ch < tx_channel_nums.size(); ch++)
usrp->set_tx_antenna(tx_ant, ch);
}
if (vm.count("tx-freq-init") > 0)
{
std::cout << boost::format(HEADER_TX"Setting initial TX freq: %f Hz (LO offset: %f Hz)") % tx_freq_init % tx_lo_offset << std::endl;
uhd::tune_request_t tune_request = uhd::tune_request_t(tx_freq_init, tx_lo_offset);
for (size_t ch = 0; ch < tx_channel_nums.size(); ch++)
usrp->set_tx_freq(tune_request, ch);
}
if (vm.count("tx-gain") > 0)
{
std::cout << boost::format(HEADER_TX"Setting TX gain: %f") % tx_gain << std::endl;
for (size_t ch = 0; ch < tx_channel_nums.size(); ch++)
usrp->set_tx_gain(tx_gain, ch);
}
}
if (usrp->get_time_source(0) == "gpsdo")
{
std::cout << boost::format(HEADER "Waiting for GPSDO time to latch") << std::endl;
sleep(1);
}
uhd::time_spec_t time_start = usrp->get_time_now(); // Usually DSP #0 on mboard #0
std::cout << boost::format(HEADER "Time now: %f seconds (%llu ticks)") % time_start.get_real_secs() % time_start.to_ticks(usrp->get_master_clock_rate()) << std::endl;
boost::thread_group thread_group;
{
boost::mutex::scoped_lock l_tx(begin_tx_mutex);
boost::mutex::scoped_lock l_rx(begin_rx_mutex);
TX_PARAMS tx_params;
RX_PARAMS rx_params;
if (rx_channel_nums.size() > 0)
{
//create a receive streamer
size_t bytes_per_rx_sample = uhd::convert::get_bytes_per_item(rx_cpu);
std::cout << boost::format(HEADER_RX"CPU bytes per RX sample: %d for '%s'") % bytes_per_rx_sample % rx_cpu << std::endl;
size_t wire_bytes_per_rx_sample = uhd::convert::get_bytes_per_item(rx_otw);
std::cout << boost::format(HEADER_RX"OTW bytes per RX sample: %d for '%s'") % wire_bytes_per_rx_sample % rx_otw << std::endl;
uhd::stream_args_t rx_stream_args(rx_cpu, rx_otw);
rx_stream_args.channels = rx_channel_nums;
if (samps_per_packet > 0)
{
std::cout << boost::format(HEADER_RX"Samples per RX packet requested: %d") % samps_per_packet << std::endl;
rx_stream_args.args["spp"] = str(boost::format("%d") % samps_per_packet);
}
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(rx_stream_args);
samps_per_packet = rx_stream->get_max_num_samps();
std::cout << boost::format(HEADER_RX"Max samples per RX packet: %d") % samps_per_packet << std::endl;
if (samps_per_buff > 0)
{
std::cout << boost::format(HEADER_RX"RX buffer size requested to be (samples): %d") % samps_per_buff << std::endl;
}
else
{
std::cout << HEADER_RX"RX buffer size will accommodate one RX packet" << std::endl;
samps_per_buff = samps_per_packet;
}
std::cout << boost::format(HEADER_RX"RX buffer size (samples): %d") % samps_per_buff << std::endl;
if (recv_start_delay > 0)
std::cout << boost::format(HEADER_RX"RX streaming will begin in: %d seconds") % recv_start_delay << std::endl;
else
std::cout << boost::format(HEADER_RX"RX streaming will begin immediately") << std::endl;
std::cout << boost::format(HEADER_RX"RX streamer timeout: %f seconds") % recv_timeout << std::endl;
if (recv_start_delay > 0)
std::cout << boost::format(HEADER_RX"Initial RX streamer timeout: %f seconds") % (recv_timeout + recv_start_delay) << std::endl;
if ((recv_single_packets) && (samps_per_buff > samps_per_packet))
std::cout << HEADER_RX"Will receive single packets" << std::endl;
else
std::cout << HEADER_RX"Will receive as much as can fit in one host-side buffer" << std::endl;
if (rx_sample_limit > 0)
{
std::cout << boost::format(HEADER_RX"Will receive a total of %ld samples") % rx_sample_limit << std::endl;
const size_t upper_rx_sample_limit = 0x0FFFFFFF;
if (rx_sample_limit > upper_rx_sample_limit)
std::cout << boost::format(HEADER_WARN"Total number of requested samples (%ld) is greater than limit (%ld)") % rx_sample_limit % upper_rx_sample_limit << std::endl;
}
if (rx_size_map)
{
if (recv_single_packets == false)
{
recv_single_packets = true;
}
}
if (rx_file.empty() == false)
{
if (rx_filename_has_format == false)
{
if (rx_stream->get_num_channels() == 1)
{
std::cout << boost::format(HEADER_RX"Capturing single channel to \"%s\"") % rx_file << std::endl;
}
else
{
if (interleave_rx_file_samples)
std::cout << boost::format(HEADER_RX"Capturing all %d channels as interleaved samples to \"%s\"") % rx_stream->get_num_channels() % rx_file << std::endl;
else
std::cout << boost::format(HEADER_RX"Capturing all %d channels as interleaved buffers to \"%s\"") % rx_stream->get_num_channels() % rx_file << std::endl;
}
rx_params.capture_files.push_back(new std::ofstream(rx_file.c_str(), std::ios::out));
}
else
{
for (size_t n = 0; n < rx_stream->get_num_channels(); ++n)
{
std::cout << boost::format(HEADER_RX"Capturing channel %d to \"%s\"") % n % (boost::str(boost::format(rx_file) % n)) << std::endl;
std::string rx_file_name(boost::str(boost::format(rx_file) % n));
rx_params.capture_files.push_back(new std::ofstream(rx_file_name.c_str(), std::ios::out));
}
}
}
std::cout << boost::format(
HEADER_RX"Testing receive rate %f Msps on %u channels: %s"
) % (usrp->get_rx_rate()/1e6) % rx_stream->get_num_channels() % rx_channel_list << std::endl;
rx_params.samps_per_packet = samps_per_packet;
rx_params.samps_per_buff = samps_per_buff;
rx_params.start_time = time_start;
rx_params.start_time_delay = recv_start_delay;
rx_params.recv_timeout = recv_timeout;
rx_params.one_packet_at_a_time = recv_single_packets;
rx_params.check_recv_time = check_recv_time;
rx_params.progress_interval = rx_progress_interval;
rx_params.size_map = rx_size_map;
rx_params.rx_sample_limit = rx_sample_limit;
rx_params.set_rx_freq = (vm.count("rx-freq") > 0);
rx_params.rx_freq = rx_freq;
rx_params.rx_freq_delay = rx_freq_delay;
rx_params.rx_lo_offset = rx_lo_offset;
rx_params.interleave_rx_file_samples = interleave_rx_file_samples;
rx_params.ignore_late_start = ignore_late_start;
rx_params.ignore_bad_packets = ignore_bad_packets;
rx_params.ignore_timeout = ignore_timeout;
rx_params.ignore_unexpected_error = ignore_unexpected_error;
thread_group.create_thread(boost::bind(
&benchmark_rx_rate,
usrp,
rx_cpu,
rx_stream,
rx_params));
}
if (tx_channel_nums.size() > 0) {
//create a transmit streamer
size_t bytes_per_tx_sample = uhd::convert::get_bytes_per_item(tx_cpu);
std::cout << boost::format(HEADER_TX"CPU bytes per TX sample: %d for '%s'") % bytes_per_tx_sample % tx_cpu << std::endl;
size_t wire_bytes_per_tx_sample = uhd::convert::get_bytes_per_item(tx_otw);
std::cout << boost::format(HEADER_TX"OTW bytes per TX sample: %d for '%s'") % wire_bytes_per_tx_sample % tx_otw << std::endl;
uhd::stream_args_t tx_stream_args(tx_cpu, tx_otw);
tx_stream_args.channels = tx_channel_nums;
/*
* In the "next_burst" mode, the DSP drops incoming packets until a new burst is started.
* In the "next_packet" mode, the DSP starts transmitting again at the next packet.
*/
if (allow_late_bursts == false)
{
std::cout << HEADER_TX"Underflow policy set to drop late bursts ('next_burst')" << std::endl;
tx_stream_args.args["underflow_policy"] = "next_burst";
}
else
std::cout << HEADER_TX"Default underflow policy: allow late bursts ('next_packet')" << std::endl;
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(tx_stream_args);
std::cout << boost::format(HEADER_TX"Max TX samples per packet: %d") % tx_stream->get_max_num_samps() << std::endl;
std::cout << boost::format(
HEADER_TX"Testing transmit rate %f Msps on %u channels: %s"
) % (usrp->get_tx_rate()/1e6) % tx_stream->get_num_channels() % tx_channel_list << std::endl;
if ((send_start_delay > 0) && (use_tx_timespec == false)) // FIXME: Don't display warnings if tx-follows-rx
{
std::cout << HEADER_WARN"Send start delay ignored as not using TX timespec" << std::endl;
}
else if (((send_start_delay <= 0) && (tx_rx_sync == false) && (tx_follows_rx == false)) && (use_tx_timespec))
{
std::cout << HEADER_WARN"Cannot use TX timespec without a TX start delay, TX-RX start sync, or TX following RX" << std::endl;
}
else if ((send_start_delay > 0) && (use_tx_timespec))
{
if (use_relative_tx_timestamps)
std::cout << HEADER_TX"Will relative timestamps" << std::endl;
// FIXME: tx_follows_rx
}
if (tx_rx_sync)
{
if (use_tx_timespec == false)
{
std::cout << HEADER_WARN"Cannot sync to RX when not using TX timespec" << std::endl;
}
else if (tx_time_offset <= 0)
{
std::cout << HEADER_WARN"Cannot sync to RX with no TX time offset" << std::endl;
}
}
if (recover_late)
{
if (tx_time_offset <= 0)
{
std::cout << HEADER_WARN"TX late recovery will not work with no TX time offset" << std::endl;
}
}
if (use_tx_eob)
std::cout << HEADER_TX"Will use EOB" << std::endl;
else
std::cout << HEADER_TX"Will not use EOB" << std::endl;
tx_params.start_time = time_start;
tx_params.send_timeout = send_timeout;
tx_params.send_start_delay = send_start_delay;
tx_params.use_tx_eob = use_tx_eob;
tx_params.use_tx_timespec = use_tx_timespec;
tx_params.tx_rx_sync = tx_rx_sync;
tx_params.send_final_eob = send_final_eob;
tx_params.progress_interval = tx_progress_interval;
tx_params.use_relative_timestamps = use_relative_tx_timestamps;
tx_params.follow_rx_timestamps = tx_follows_rx;
tx_params.tx_time_offset = tx_time_offset;
tx_params.rx_rate = rx_rate; // FIXME: Check validity
tx_params.tx_burst_length = tx_burst_length;
tx_params.tx_flush_length = tx_flush_length;
tx_params.tx_full_scale = tx_full_scale;
tx_params.tx_time_between_bursts = tx_time_between_bursts;
tx_params.recover_late = recover_late;
tx_params.set_tx_freq = (vm.count("tx-freq") > 0);
tx_params.tx_freq = tx_freq;
tx_params.tx_freq_delay = tx_freq_delay;
tx_params.tx_lo_offset = tx_lo_offset;
thread_group.create_thread(boost::bind(&benchmark_tx_rate,
usrp,
tx_cpu,
tx_stream,
tx_params));
if (enable_async)
{
thread_group.create_thread(boost::bind(&benchmark_tx_rate_async_helper,
tx_stream,
tx_async_timeout));
}
}
running = true;
std::cout << HEADER "Begin..." << std::endl;
thread_group.create_thread(boost::bind(&check_thread, usrp));
if (tx_channel_nums.size() > 0)
tx_thread_begin.wait(l_tx);
if (rx_channel_nums.size() > 0)
rx_thread_begin.wait(l_rx);
std::signal(SIGINT, &sig_int_handler);
begin.notify_all();
// RTT is longer, so skip this
//time_start = usrp->get_time_now(); // Usually DSP #0 on mboard #0
//tx_params.start_time = rx_params.start_time = time_start; // Update to ignore thread start-up time
//std::cout << boost::format("Time now: %f seconds (%llu ticks)") % time_start.get_real_secs() % time_start.to_ticks(usrp->get_master_clock_rate()) << std::endl;
} // TX/RX locks will be released
std::cout << HEADER << "(" << get_stringified_time() << ") Running..." << std::endl;
boost::mutex::scoped_lock l_stop(stop_mutex);
if (stop_signal_called == false)
{
if ((rx_sample_limit > 0) && (tx_channel_nums.size() == 0))
{
rx_thread_complete.wait(l_stop);
}
else if (interactive)
{
if (duration > 0)
{
// FIXME: Stop time
std::cout << HEADER "Waiting for Q to finish early..." << std::endl;
}
else
std::cout << HEADER "Waiting for Q..." << std::endl;
do
{
// FIXME: Stop time
if (kbhit(0))
{
char c = fgetc(stdin);
if (c == EOF)
{
std::cout << HEADER "EOF" << std::endl;
break;
}
if (tolower(c) == 'q')
break;
switch (c)
{
case 'L':
case 'U':
break;
case 'l':
case 'u':
tx_sleep_delay_now = tx_sleep_delay;
break;
case 'O':
break;
case 'o':
rx_sleep_delay_now = rx_sleep_delay;
break;
}
}
abort_event.timed_wait(l_stop, boost::posix_time::milliseconds(interactive_sleep));
} while (stop_signal_called == false);
}
else if (duration > 0)
{
//sleep for the required duration
std::cout << boost::format(HEADER "Main thread sleeping for: %f seconds (host wall clock)") % duration << std::endl;
std::cout << HEADER "Waiting for CTRL+C to finish early..." << std::endl;
const long secs = long(duration);
const long usecs = long((duration - secs)*1e6);
abort_event.timed_wait(l_stop, boost::posix_time::seconds(secs) + boost::posix_time::microseconds(usecs));
//boost::this_thread::sleep(boost::posix_time::seconds(secs) + boost::posix_time::microseconds(usecs));
}
else
{
std::cout << HEADER "Waiting for CTRL+C..." << std::endl;
abort_event.wait(l_stop);
}
}
running = false;
std::cout << HEADER << "(" << get_stringified_time() << ") Stopping..." << std::endl;
// FIXME: Timed wait & re-enable interruptions
if (rx_channel_nums.size() > 0) {
std::cout << HEADER "Waiting for RX thread..." << std::endl;
boost::mutex::scoped_lock l(begin_rx_mutex);
while (rx_thread_finished == false)
{
if (interrupt_timeout == 0)
rx_thread_complete.wait(l);
else
{
if (rx_thread_complete.timed_wait(l, interrupt_timeout_duration) == false)
{
if (rx_interrupt_disabler)
{
std::cout << HEADER "Interrupting RX thread..." << std::endl;
delete rx_interrupt_disabler;
rx_interrupt_disabler = NULL;
thread_group.interrupt_all();
}
else
{
std::cout << HEADER_WARN"Interrupting RX thread failed - giving up" << std::endl;
break;
}
}
}
}
}
if (tx_channel_nums.size() > 0) {
std::cout << HEADER "Waiting for TX thread..." << std::endl;
boost::mutex::scoped_lock l(begin_tx_mutex);
while (tx_thread_finished == false)
{
if (interrupt_timeout == 0)
tx_thread_complete.wait(l);
else
{
if (tx_thread_complete.timed_wait(l, interrupt_timeout_duration) == false)
{
if (tx_interrupt_disabler)
{
std::cout << HEADER "Interrupting TX thread..." << std::endl;
delete tx_interrupt_disabler;
tx_interrupt_disabler = NULL;
thread_group.interrupt_all();
}
else
{
std::cout << HEADER_WARN"Interrupting TX thread failed - giving up" << std::endl;
break;
}
}
}
}
if (enable_async)
{
std::cout << HEADER "Waiting for TX async message thread..." << std::endl;
boost::mutex::scoped_lock l_async(begin_tx_async_begin);
while (tx_async_thread_finished == false)
{
if (interrupt_timeout == 0)
tx_async_thread_complete.wait(l_async);
else
{
if (tx_async_thread_complete.timed_wait(l_async, interrupt_timeout_duration) == false)
{
if (tx_async_interrupt_disabler)
{
std::cout << HEADER "Interrupting TX async thread..." << std::endl;
delete tx_async_interrupt_disabler;
tx_async_interrupt_disabler = NULL;
thread_group.interrupt_all();
}
else
{
std::cout << HEADER_WARN"Interrupting TX async thread failed - giving up" << std::endl;
break;
}
}
}
}
}
}
//interrupt and join the threads
thread_group.interrupt_all();
std::cout << HEADER "Waiting for threads to join..." << std::endl;
thread_group.join_all();
}
catch (const std::runtime_error& e)
{
std::cout << HEADER_ERROR "Unhandled exception: " << e.what() << std::endl;
}
catch (...)
{
std::cout << HEADER_ERROR "Caught an unknown exception" << std::endl;
}
//print summary
std::cout << std::endl << boost::format(
"Test summary:\n"
" Num received samples: %u\n"
" Num dropped samples: %u\n"
" Num overflows detected: %u\n"
"\n"
" Num transmitted samples: %u\n"
" Num send calls: %u\n"
" Num ACKs: %u\n"
" Num sequence errors: %u\n"
" Num sequence in burst errors: %u\n"
" Num sequence errors (total): %u\n"
" Num underflows detected: %u\n"
" Num underflows in packet detected: %u\n"
" Num underflows detected (total): %u\n"
" Num late packets: %u\n"
) % num_rx_samps % num_dropped_samps % num_overflows % num_tx_samps % num_send_calls % num_tx_acks % num_seq_errors % num_seq_errors_in_burst % (num_seq_errors + num_seq_errors_in_burst) % num_underflows % num_underflows_in_packet % (num_underflows + num_underflows_in_packet) % num_late_packets;
//finished
std::cout << std::endl << "Done!" << std::endl;
if (interactive)
{
set_nonblock(false);
//endwin();
}
return EXIT_SUCCESS;
}