/* * Dissector for UHD CVITA (CHDR) packets * * Copyright 2010-2014 Ettus Research LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ #include "config.h" #include <glib.h> #include <epan/packet.h> #include <ctype.h> #include <stdio.h> #include "../../host/lib/usrp/x300/x300_fw_common.h" #define LOG_HEADER "[UHD CHDR] " #ifndef min #define min(a,b) ((a<b)?a:b) #endif // min const unsigned int CHDR_PORT = X300_VITA_UDP_PORT; static int proto_chdr = -1; static int hf_chdr_hdr = -1; static int hf_chdr_type = -1; static int hf_chdr_has_time = -1; static int hf_chdr_eob = -1; static int hf_chdr_error = -1; static int hf_chdr_fc_ack = -1; static int hf_chdr_fc_pktcount = -1; static int hf_chdr_fc_bytecount = -1; static int hf_chdr_sequence = -1; static int hf_chdr_packet_size = -1; static int hf_chdr_stream_id = -1; static int hf_chdr_src_dev = -1; static int hf_chdr_src_ep = -1; static int hf_chdr_src_blockport = -1; static int hf_chdr_dst_dev = -1; static int hf_chdr_dst_ep = -1; static int hf_chdr_dst_blockport = -1; static int hf_chdr_timestamp = -1; static int hf_chdr_payload = -1; static int hf_chdr_ext_response = -1; static int hf_chdr_ext_fc = -1; static int hf_chdr_ext_status_code = -1; static int hf_chdr_ext_seq_num = -1; static int hf_chdr_cmd = -1; static int hf_chdr_cmd_address = -1; static int hf_chdr_cmd_value = -1; static const value_string CHDR_PACKET_TYPES[] = { { 0, "Data" }, { 1, "Data (End-of-Burst)" }, { 4, "Flow Control" }, { 5, "Flow Control (ACK)" }, { 8, "Command" }, { 12, "Response" }, { 13, "Error Response" }, }; static const value_string CHDR_PACKET_TYPES_SHORT[] = { { 0, "data" }, { 1, "data" }, { 4, "fc" }, { 5, "fc" }, { 8, "cmd" }, { 12, "resp" }, { 13, "resp" }, }; /* the heuristic dissector is called on every packet with payload. * The warning printed for this should only be printed once. */ static int heur_warning_printed = 0; /* Subtree handles: set by register_subtree_array */ static gint ett_chdr = -1; static gint ett_chdr_header = -1; static gint ett_chdr_id = -1; static gint ett_chdr_response = -1; static gint ett_chdr_fc = -1; static gint ett_chdr_cmd = -1; /* Forward-declare the dissector functions */ void proto_register_chdr(void); void proto_reg_handoff_chdr(void); static void dissect_chdr(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree); /* heuristic dissector call. Will always return. */ static gboolean heur_dissect_chdr(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* whatislove) { if(heur_warning_printed < 1){ printf(LOG_HEADER"heuristic dissector always returns true!\n"); heur_warning_printed++; } dissect_chdr(tvb, pinfo, tree); return (TRUE); } static void byte_swap(guint8 *bytes, gint len) { guint8 tmp[4]; if(len != sizeof(tmp)){ printf(LOG_HEADER"FATAL! number of bytes don't match 32 bit!\n"); return; } memcpy(tmp, bytes, sizeof(tmp)); bytes[0] = tmp[3]; bytes[1] = tmp[2]; bytes[2] = tmp[1]; bytes[3] = tmp[0]; } static unsigned long long get_timestamp(guint8 *bytes, gint len) { unsigned long long ts; unsigned long long trans; int it; if(len != sizeof(unsigned long long)){ printf(LOG_HEADER"FATAL! timestamps always consist of 64 bits!\n"); } byte_swap(bytes + 0, 4); byte_swap(bytes + 4, 4); ts = 0; for(it = 0; it < 8; it++){ ts = ts << 8; trans = (guint64) bytes[it]; ts = ts | trans; } return (ts); } /* The dissector itself */ static void dissect_chdr(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { // Here are all the variables proto_item *item; proto_item *stream_item; proto_tree *chdr_tree; proto_item *header_item; proto_tree *header_tree; proto_tree *stream_tree; proto_item *response_item; proto_tree *response_tree; proto_item *cmd_item; proto_tree *cmd_tree; proto_item *fc_item; proto_tree *fc_tree; gint len; gint flag_offset; guint8 *bytes; guint8 hdr_bits = 0; gboolean flag_has_time = 0; gboolean flag_is_data = 0; gboolean flag_is_fc = 0; gboolean flag_is_cmd = 0; gboolean flag_is_resp = 0; gboolean flag_is_eob = 0; gboolean flag_is_error = 0; gboolean flag_is_fcack = 0; uint64_t timestamp; gboolean is_network; gint endianness; gint id_pos_usb[4] = {3, 2, 1, 0}; gint id_pos_net[4] = {0, 1, 2, 3}; gint id_pos[4] = {0, 1, 2, 3}; if(pinfo->match_uint == CHDR_PORT){ is_network = TRUE; flag_offset = 0; endianness = ENC_BIG_ENDIAN; memcpy(id_pos, id_pos_net, 4 * sizeof(gint)); } else{ // Parsing a USB capture is_network = FALSE; flag_offset = 3; endianness = ENC_LITTLE_ENDIAN; memcpy(id_pos, id_pos_usb, 4 * sizeof(gint)); } len = tvb_reported_length(tvb); col_append_str(pinfo->cinfo, COL_PROTOCOL, "/CHDR"); /* This throws a warning: */ /*col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "CHDR", tvb_format_text_wsp(tvb, 0, len));*/ col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "CHDR"); if (tree){ int header_size = -1; // Total size of the CHDR header. Either 8 or 16. guint16 hdr_info; if (len >= 4){ guint8 pkt_type = 0; hdr_info = tvb_get_ntohs(tvb, flag_offset); header_size = 8; // We now know the header is at least 8 bytes long. hdr_bits = (hdr_info & 0xF000) >> 12; pkt_type = hdr_bits >> 2; flag_is_data = (pkt_type == 0); flag_is_fc = (pkt_type == 1); flag_is_cmd = (pkt_type == 2); flag_is_resp = (pkt_type == 3); flag_is_eob = flag_is_data && (hdr_bits & 0x1); flag_is_error = flag_is_resp && (hdr_bits & 0x1); flag_is_fcack = flag_is_fc && (hdr_bits & 0x1); flag_has_time = hdr_bits & 0x2; if (flag_has_time) { header_size += 8; // 64-bit timestamp. } /* header_size is now final. */ } /* Start with a top-level item to add everything else to */ item = proto_tree_add_item(tree, proto_chdr, tvb, 0, min(len, header_size), ENC_NA); if (len >= 4) { chdr_tree = proto_item_add_subtree(item, ett_chdr); /* Header info. First, a top-level header tree item: */ header_item = proto_tree_add_item(chdr_tree, hf_chdr_hdr, tvb, flag_offset, 1, endianness); header_tree = proto_item_add_subtree(header_item, ett_chdr_header); proto_item_append_text(header_item, ", Packet type: %s %04x", val_to_str(hdr_bits & 0xD, CHDR_PACKET_TYPES, "Unknown (0x%x)"), hdr_bits ); /* Let us query hdr.type */ proto_tree_add_string( header_tree, hf_chdr_type, tvb, flag_offset, 1, val_to_str(hdr_bits & 0xD, CHDR_PACKET_TYPES_SHORT, "invalid") ); /* And other flags */ proto_tree_add_boolean(header_tree, hf_chdr_has_time, tvb, flag_offset, 1, flag_has_time); if (flag_is_data) { proto_tree_add_boolean(header_tree, hf_chdr_eob, tvb, flag_offset, 1, flag_is_eob); } if (flag_is_resp) { proto_tree_add_boolean(header_tree, hf_chdr_error, tvb, flag_offset, 1, flag_is_error); /*proto_tree_add_boolean(header_tree, hf_chdr_error, tvb, flag_offset, 1, true);*/ } if (flag_is_fc) { proto_tree_add_boolean(header_tree, hf_chdr_fc_ack, tvb, flag_offset, 1, flag_is_fcack); } /* These lines add sequence, packet_size and stream ID */ proto_tree_add_item(chdr_tree, hf_chdr_sequence, tvb, (is_network ? 0:2), 2, endianness); proto_tree_add_item(chdr_tree, hf_chdr_packet_size, tvb, (is_network ? 2:0), 2, endianness); if (len >= 8){ /* stream id can be broken down to 4 sections. these are collapsed in a subtree */ stream_item = proto_tree_add_item(chdr_tree, hf_chdr_stream_id, tvb, 4, 4, endianness); stream_tree = proto_item_add_subtree(stream_item, ett_chdr_id); proto_tree_add_item(stream_tree, hf_chdr_src_dev, tvb, 4+id_pos[0], 1, ENC_NA); proto_tree_add_item(stream_tree, hf_chdr_src_ep, tvb, 4+id_pos[1], 1, ENC_NA); proto_tree_add_item(stream_tree, hf_chdr_dst_dev, tvb, 4+id_pos[2], 1, ENC_NA); proto_tree_add_item(stream_tree, hf_chdr_dst_ep, tvb, 4+id_pos[3], 1, ENC_NA); /* Block ports (only add them if address points to a device) */ guint32 sid = tvb_get_ntohl(tvb, 4); guint8* sid_bytes = (guint8*) &sid; if (sid_bytes[3] != 0) { proto_tree_add_item(stream_tree, hf_chdr_src_blockport, tvb, 4+2, 1, ENC_NA); } if (sid_bytes[1] != 0) { proto_tree_add_item(stream_tree, hf_chdr_dst_blockport, tvb, 4+0, 1, ENC_NA); } /* Append SID in sid_t hex format */ proto_item_append_text(stream_item, " (%02X:%02X>%02X:%02X)", sid_bytes[3], sid_bytes[2], sid_bytes[1], sid_bytes[0] ); /*proto_item_append_text(stream_item, "%08X", sid);*/ /* if has_time flag is present interpret timestamp */ if ((flag_has_time) && (len >= 16)){ if (is_network) item = proto_tree_add_item(chdr_tree, hf_chdr_timestamp, tvb, 8, 8, endianness); else{ bytes = (guint8*) tvb_get_string_enc(wmem_packet_scope(), tvb, 8, sizeof(unsigned long long), ENC_ASCII); timestamp = get_timestamp(bytes, sizeof(unsigned long long)); proto_tree_add_uint64(chdr_tree, hf_chdr_timestamp, tvb, 8, 8, timestamp); } } int remaining_bytes = (len - header_size); int show_raw_payload = (remaining_bytes > 0); if (flag_is_cmd && remaining_bytes == 8) { cmd_item = proto_tree_add_item(chdr_tree, hf_chdr_cmd, tvb, header_size, 8, endianness); cmd_tree = proto_item_add_subtree(cmd_item, ett_chdr_cmd); proto_tree_add_item(cmd_tree, hf_chdr_cmd_address, tvb, header_size, 4, endianness); proto_tree_add_item(cmd_tree, hf_chdr_cmd_value, tvb, header_size + 4, 4, endianness); } else if (flag_is_resp) { response_item = proto_tree_add_item(chdr_tree, hf_chdr_ext_response, tvb, header_size, 8, endianness); response_tree = proto_item_add_subtree(response_item, ett_chdr_response); proto_tree_add_item(response_tree, hf_chdr_ext_status_code, tvb, header_size, 4, endianness); /* This will show the 12-bits of sequence ID in the last 2 bytes */ proto_tree_add_item(response_tree, hf_chdr_ext_seq_num, tvb, (header_size + 4 + (is_network ? 2 : 0)), 2, endianness); } else if (flag_is_fc) { fc_item = proto_tree_add_item(chdr_tree, hf_chdr_ext_fc, tvb, header_size, 8, endianness); fc_tree = proto_item_add_subtree(fc_item, ett_chdr_fc); proto_tree_add_item(fc_tree, hf_chdr_fc_pktcount, tvb, header_size, 4, endianness); proto_tree_add_item(fc_tree, hf_chdr_fc_bytecount, tvb, header_size + 4, 4, endianness); } else if (show_raw_payload) { proto_tree_add_item(chdr_tree, hf_chdr_payload, tvb, header_size, -1, ENC_NA); } } } } } void proto_register_chdr(void) { static hf_register_info hf[] = { { &hf_chdr_hdr, { "Header bits", "chdr.hdr", FT_UINT8, BASE_HEX, NULL, 0xF0, NULL, HFILL } }, { &hf_chdr_type, { "Packet Type", "chdr.hdr.type", FT_STRINGZ, BASE_NONE, NULL, 0x00, "Packet Type", HFILL } }, { &hf_chdr_has_time, { "Has time", "chdr.hdr.has_time", FT_BOOLEAN, BASE_NONE, NULL, 0x20, NULL, HFILL } }, { &hf_chdr_eob, { "End Of Burst", "chdr.hdr.eob", FT_BOOLEAN, BASE_NONE, NULL, 0x10, NULL, HFILL } }, { &hf_chdr_error, { "Error Flag", "chdr.hdr.error", FT_BOOLEAN, BASE_NONE, NULL, 0x10, NULL, HFILL } }, { &hf_chdr_fc_ack, { "FC ACK Flag", "chdr.hdr.fc_ack", FT_BOOLEAN, BASE_NONE, NULL, 0x10, NULL, HFILL } }, { &hf_chdr_ext_fc, { "Flow Control", "chdr.fc", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_fc_bytecount, { "FC Byte Count", "chdr.hdr.fc.byte_count", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_fc_pktcount, { "FC Packet Count", "chdr.hdr.fc.pkt_count", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_sequence, { "Sequence ID", "chdr.seq", FT_UINT16, BASE_DEC, NULL, 0x0FFF, NULL, HFILL } }, { &hf_chdr_packet_size, { "Packet size", "chdr.size", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_stream_id, { "Stream ID", "chdr.sid", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_src_dev, { "Source device", "chdr.src_dev", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_src_ep, { "Source endpoint", "chdr.src_ep", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_src_blockport, { "Source block port", "chdr.src_bp", FT_UINT8, BASE_DEC, NULL, 0xF, NULL, HFILL } }, { &hf_chdr_dst_dev, { "Destination device", "chdr.dst_dev", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_dst_ep, { "Destination endpoint", "chdr.dst_ep", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_dst_blockport, { "Destination block port", "chdr.dst_bp", FT_UINT8, BASE_DEC, NULL, 0xF, NULL, HFILL } }, { &hf_chdr_timestamp, { "Time", "chdr.time", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_payload, { "Payload", "chdr.payload", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_ext_response, { "Response", "chdr.res", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_ext_status_code, { "Status code", "chdr.res.status", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_ext_seq_num, { "Response to sequence ID", "chdr.res.seq", FT_UINT16, BASE_DEC, NULL, 0x0FFF, NULL, HFILL } }, { &hf_chdr_cmd, { "Command", "chdr.cmd", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_cmd_address, { "Register Address", "chdr.cmd.addr", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_chdr_cmd_value, { "Command Value", "chdr.cmd.val", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } }, }; static gint *ett[] = { &ett_chdr, &ett_chdr_header, &ett_chdr_id, &ett_chdr_response, &ett_chdr_fc, &ett_chdr_cmd }; proto_chdr = proto_register_protocol("UHD CHDR", "CHDR", "chdr"); proto_register_field_array(proto_chdr, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); register_dissector("chdr", dissect_chdr, proto_chdr); } /* Handler registration */ void proto_reg_handoff_chdr(void) { /* register heuristic dissector for use with USB */ #if VERSION_MAJOR == 1 heur_dissector_add("usb.bulk", heur_dissect_chdr, proto_chdr); #elif VERSION_MAJOR == 2 heur_dissector_add("usb.bulk", heur_dissect_chdr, "USB dissector", "usb_bulk", proto_chdr, HEURISTIC_ENABLE); #else #error Wireshark version not found or not compatible #endif /* register dissector for UDP packets */ static dissector_handle_t chdr_handle; chdr_handle = create_dissector_handle(dissect_chdr, proto_chdr); dissector_add_uint("udp.port", CHDR_PORT, chdr_handle); }