// First halfband iterpolator // Implements impulse responses of the form [A 0 B 0 C .. 0 H 0.5 H 0 .. C 0 B 0 A] // Strobe in cannot come faster than every 4th clock cycle, // Strobe out cannot come faster than every 2nd clock cycle // These taps designed by halfgen4 from ldoolittle // myfilt = round(2^18 * halfgen4(.7/4,8)) module hb_interp #(parameter IWIDTH=18, OWIDTH=18, ACCWIDTH=24) (input clk, input rst, input bypass, input [7:0] cpo, // Clocks per output, must be at least 2 input stb_in, input [IWIDTH-1:0] data_in, input stb_out, output reg [OWIDTH-1:0] data_out); localparam MWIDTH = ACCWIDTH-2; localparam CWIDTH = 18; reg [CWIDTH-1:0] coeff1, coeff2; reg [3:0] addr_a, addr_b, addr_c, addr_d, addr_e; wire [IWIDTH-1:0] data_a, data_b, data_c, data_d, data_e, sum1, sum2; wire [35:0] prod1, prod2; reg [2:0] phase, phase_d1, phase_d2, phase_d3, phase_d4, phase_d5; always @(posedge clk) if(rst) phase <= 0; else if(stb_in) phase <= 1; else if(phase==4) phase <= 0; else if(phase!=0) phase <= phase + 1; always @(posedge clk) phase_d1 <= phase; always @(posedge clk) phase_d2 <= phase_d1; always @(posedge clk) phase_d3 <= phase_d2; always @(posedge clk) phase_d4 <= phase_d3; always @(posedge clk) phase_d5 <= phase_d4; srl #(.WIDTH(IWIDTH)) srl_a (.clk(clk),.write(stb_in),.in(data_in),.addr(addr_a),.out(data_a)); srl #(.WIDTH(IWIDTH)) srl_b (.clk(clk),.write(stb_in),.in(data_in),.addr(addr_b),.out(data_b)); srl #(.WIDTH(IWIDTH)) srl_c (.clk(clk),.write(stb_in),.in(data_in),.addr(addr_c),.out(data_c)); srl #(.WIDTH(IWIDTH)) srl_d (.clk(clk),.write(stb_in),.in(data_in),.addr(addr_d),.out(data_d)); srl #(.WIDTH(IWIDTH)) srl_e (.clk(clk),.write(stb_in),.in(data_in),.addr(addr_e),.out(data_e)); always @* case(phase) 1 : begin addr_a = 0; addr_b = 15; end 2 : begin addr_a = 1; addr_b = 14; end 3 : begin addr_a = 2; addr_b = 13; end 4 : begin addr_a = 3; addr_b = 12; end default : begin addr_a = 0; addr_b = 15; end endcase // case(phase) always @* case(phase) 1 : begin addr_c = 4; addr_d = 11; end 2 : begin addr_c = 5; addr_d = 10; end 3 : begin addr_c = 6; addr_d = 9; end 4 : begin addr_c = 7; addr_d = 8; end default : begin addr_c = 4; addr_d = 11; end endcase // case(phase) always @* case(cpo) 2 : addr_e <= 9; 3,4,5,6,7,8 : addr_e <= 8; default : addr_e <= 7; // This case works for 256, which = 0 due to overflow outside this block endcase // case(cpo) always @* // Outer coeffs case(phase_d1) 1 : coeff1 = -107; 2 : coeff1 = 445; 3 : coeff1 = -1271; 4 : coeff1 = 2959; default : coeff1 = -107; endcase // case(phase) always @* // Inner coeffs case(phase_d1) 1 : coeff2 = -6107; 2 : coeff2 = 11953; 3 : coeff2 = -24706; 4 : coeff2 = 82359; default : coeff2 = -6107; endcase // case(phase) add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add1 (.clk(clk),.in1(data_a),.in2(data_b),.sum(sum1)); add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add2 (.clk(clk),.in1(data_c),.in2(data_d),.sum(sum2)); // sum1, sum2 available on phase_d1 wire do_mult = 1; MULT18X18S mult1(.C(clk), .CE(do_mult), .R(rst), .P(prod1), .A(coeff1), .B(sum1) ); MULT18X18S mult2(.C(clk), .CE(do_mult), .R(rst), .P(prod2), .A(coeff2), .B(sum2) ); // prod1, prod2 available on phase_d2 wire [MWIDTH-1:0] sum_of_prod; add2_and_round_reg #(.WIDTH(MWIDTH)) add3 (.clk(clk),.in1(prod1[35:36-MWIDTH]),.in2(prod2[35:36-MWIDTH]),.sum(sum_of_prod)); // sum_of_prod available on phase_d3 wire [ACCWIDTH-1:0] acc_out; wire [OWIDTH-1:0] acc_round; wire clear = (phase_d3 == 1); wire do_acc = (phase_d3 != 0); acc #(.IWIDTH(MWIDTH),.OWIDTH(ACCWIDTH)) acc (.clk(clk),.clear(clear),.acc(do_acc),.in(sum_of_prod),.out(acc_out)); // acc_out available on phase_d4 wire [ACCWIDTH-6:0] clipped_acc; clip #(.bits_in(ACCWIDTH),.bits_out(ACCWIDTH-5)) final_clip(.in(acc_out),.out(clipped_acc)); reg [ACCWIDTH-6:0] clipped_reg; always @(posedge clk) if(phase_d4 == 4) clipped_reg <= clipped_acc; // clipped_reg available on phase_d5 wire [OWIDTH-1:0] data_out_round; round #(.bits_in(ACCWIDTH-5),.bits_out(OWIDTH)) final_round (.in(clipped_reg),.out(data_out_round)); reg odd; always @(posedge clk) if(rst) odd <= 0; else if(stb_in) odd <= 0; else if(stb_out) odd <= 1; always @(posedge clk) if(bypass) data_out <= data_in; else if(stb_out) if(odd) data_out <= data_e; else data_out <= data_out_round; // data_out available on phase_d6 endmodule // hb_interp