`define DSP_CORE_RX_BASE 160 module dsp_core_rx (input clk, input rst, input set_stb, input [7:0] set_addr, input [31:0] set_data, input [13:0] adc_a, input adc_ovf_a, input [13:0] adc_b, input adc_ovf_b, output [31:0] sample, input run, output strobe, output [31:0] debug ); wire [15:0] scale_i, scale_q; wire [13:0] adc_a_ofs, adc_b_ofs; reg [13:0] adc_i, adc_q; wire [31:0] phase_inc; reg [31:0] phase; wire [35:0] prod_i, prod_q; wire [23:0] i_cordic, q_cordic; wire [23:0] i_cic, q_cic; wire [17:0] i_cic_scaled, q_cic_scaled; wire [17:0] i_hb1, q_hb1; wire [17:0] i_hb2, q_hb2; wire [15:0] i_out, q_out; wire strobe_cic, strobe_hb1, strobe_hb2; wire enable_hb1, enable_hb2; wire [7:0] cic_decim_rate; setting_reg #(.my_addr(`DSP_CORE_RX_BASE+0)) sr_0 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out(phase_inc),.changed()); setting_reg #(.my_addr(`DSP_CORE_RX_BASE+1)) sr_1 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out({scale_i,scale_q}),.changed()); setting_reg #(.my_addr(`DSP_CORE_RX_BASE+2)) sr_2 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out({enable_hb1, enable_hb2, cic_decim_rate}),.changed()); rx_dcoffset #(.WIDTH(14),.ADDR(`DSP_CORE_RX_BASE+6)) rx_dcoffset_a (.clk(clk),.rst(rst),.set_stb(set_stb),.set_addr(set_addr),.set_data(set_data), .adc_in(adc_a),.adc_out(adc_a_ofs)); rx_dcoffset #(.WIDTH(14),.ADDR(`DSP_CORE_RX_BASE+7)) rx_dcoffset_b (.clk(clk),.rst(rst),.set_stb(set_stb),.set_addr(set_addr),.set_data(set_data), .adc_in(adc_b),.adc_out(adc_b_ofs)); wire [3:0] muxctrl; setting_reg #(.my_addr(`DSP_CORE_RX_BASE+8)) sr_8 (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), .in(set_data),.out(muxctrl),.changed()); // The TVRX connects to what is called adc_b, thus A and B are // swapped throughout the design. // // In the interest of expediency and keeping the s/w sane, we just remap them here. // The I & Q fields are mapped the same: // 0 -> "the real A" (as determined by the TVRX) // 1 -> "the real B" // 2 -> const zero always @(posedge clk) case(muxctrl[1:0]) // The I mapping 0: adc_i <= adc_b_ofs; // "the real A" 1: adc_i <= adc_a_ofs; 2: adc_i <= 0; default: adc_i <= 0; endcase // case(muxctrl[1:0]) always @(posedge clk) case(muxctrl[3:2]) // The Q mapping 0: adc_q <= adc_b_ofs; // "the real A" 1: adc_q <= adc_a_ofs; 2: adc_q <= 0; default: adc_q <= 0; endcase // case(muxctrl[3:2]) always @(posedge clk) if(rst) phase <= 0; else if(~run) phase <= 0; else phase <= phase + phase_inc; MULT18X18S mult_i (.P(prod_i), // 36-bit multiplier output .A({{4{adc_i[13]}},adc_i} ), // 18-bit multiplier input .B({{2{scale_i[15]}},scale_i}), // 18-bit multiplier input .C(clk), // Clock input .CE(1), // Clock enable input .R(rst) // Synchronous reset input ); MULT18X18S mult_q (.P(prod_q), // 36-bit multiplier output .A({{4{adc_q[13]}},adc_q} ), // 18-bit multiplier input .B({{2{scale_q[15]}},scale_q}), // 18-bit multiplier input .C(clk), // Clock input .CE(1), // Clock enable input .R(rst) // Synchronous reset input ); cordic #(.bitwidth(24)) cordic(.clock(clk), .reset(rst), .enable(run), .xi(prod_i[23:0]),. yi(prod_q[23:0]), .zi(phase[31:16]), .xo(i_cordic),.yo(q_cordic),.zo() ); cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate), .strobe_fast(1),.strobe_slow(strobe_cic) ); cic_decim #(.bw(24)) decim_i (.clock(clk),.reset(rst),.enable(run), .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), .signal_in(i_cordic),.signal_out(i_cic)); cic_decim #(.bw(24)) decim_q (.clock(clk),.reset(rst),.enable(run), .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), .signal_in(q_cordic),.signal_out(q_cic)); round_reg #(.bits_in(24),.bits_out(18)) round_icic (.clk(clk),.in(i_cic),.out(i_cic_scaled)); round_reg #(.bits_in(24),.bits_out(18)) round_qcic (.clk(clk),.in(q_cic),.out(q_cic_scaled)); reg strobe_cic_d1; always @(posedge clk) strobe_cic_d1 <= strobe_cic; small_hb_dec #(.WIDTH(18)) small_hb_i (.clk(clk),.rst(rst),.bypass(~enable_hb1), .stb_in(strobe_cic_d1),.data_in(i_cic_scaled),.stb_out(strobe_hb1),.data_out(i_hb1)); small_hb_dec #(.WIDTH(18)) small_hb_q (.clk(clk),.rst(rst),.bypass(~enable_hb1), .stb_in(strobe_cic_d1),.data_in(q_cic_scaled),.stb_out(),.data_out(q_hb1)); wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate}; hb_dec #(.IWIDTH(18), .OWIDTH(18), .CWIDTH(18), .ACCWIDTH(24)) hb_i (.clk(clk),.rst(rst),.bypass(~enable_hb2),.cpi(cpi_hb), .stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2)); hb_dec #(.IWIDTH(18), .OWIDTH(18), .CWIDTH(18), .ACCWIDTH(24)) hb_q (.clk(clk),.rst(rst),.bypass(~enable_hb2),.cpi(cpi_hb), .stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2)); round #(.bits_in(18),.bits_out(16)) round_iout (.in(i_hb2),.out(i_out)); round #(.bits_in(18),.bits_out(16)) round_qout (.in(q_hb2),.out(q_out)); assign sample = {i_out,q_out}; assign strobe = strobe_hb2; assign debug = {enable_hb1, enable_hb2, run, strobe, strobe_cic, strobe_cic_d1, strobe_hb1, strobe_hb2}; endmodule // dsp_core_rx