////////////////////////////////////////////////////////////////////// //// //// //// uart_device.v //// //// //// //// This file is part of the "uart16550" project //// //// http://www.opencores.org/projects/uart16550/ //// //// //// //// Author(s): //// //// - tadej@opencores.org (Tadej Markovic) //// //// - igorm@opencores.org (Igor Mohor) //// //// //// //// All additional information is avaliable in the README.txt //// //// file. //// //// //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 - 2004 authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: uart_device.v,v $ // Revision 1.1 2004/03/27 03:55:16 tadejm // Testbench with complete selfchecking. BUG is that THRE status is set at the end of last sent bit when TX FIFO is empty instead when only TX FIFO gets empty. This causes testcases not to finish. // // // `include "uart_testbench_defines.v" `include "timescale.v" module uart_device ( // UART signals stx_i, srx_o, // Modem signals rts_i, cts_o, dtr_i, dsr_o, ri_o, dcd_o ); // IN/OUT signals //############### // UART signals input stx_i; output srx_o; // Modem signals input rts_i; output cts_o; input dtr_i; output dsr_o; output ri_o; output dcd_o; // INTERNAL signals //################# // Clock generation signals //######################### // Operational and transmission clock signals reg rx_clk; // RX device clock with period T_clk_period (should be equal to wb_clk_period) reg tx_clk; // TX device clock with period (T_clk_period + T_clk_delay) reg tx_clk_divided; // divided TX device clock with period ((T_clk_period + T_clk_delay) * T_divisor * 16) // Clock enable signals reg rx_clk_en = 1'b1; reg tx_clk_en = 1'b1; reg tx_clk_divided_en = 1'b1; // Clock period variables real T_clk_period = 20; real T_clk_delay = 0; integer T_divisor = 5; // IN/OUT assignment signals //########################## // Modem signals wire rts; wire dtr; // UART receiver signals //###################### // RX packet control signals wire rx; reg [3:0] rx_length; reg rx_odd_parity; reg rx_even_parity; reg rx_stick1_parity; reg rx_stick0_parity; reg rx_parity_enabled; reg rx_stop_bit_1; reg rx_stop_bit_1_5; reg rx_stop_bit_2; // RX logic signals wire [3:0] rx_total_length; wire [5:0] rx_break_detection_length; reg rx_packet_end; reg rx_packet_end_q; reg rx_clk_cnt_en; reg [31:0] rx_clk_cnt; reg rx_sample_clock; integer rx_bit_index; integer rx_stop_bit_index; reg [7:0] rx_data; reg [1:0] rx_stop; reg rx_framing_error; reg rx_parity; reg rx_parity_error; reg rx_break_detected; reg rx_break_detected_q; reg [31:0] rx_break_cnt; // RX events event device_received_packet; event device_received_last_bit; event device_received_stop_bit; event device_detected_rx_break; // UART transmitter signals //######################### // TX packet control signals reg tx; reg [3:0] tx_length; reg tx_odd_parity; reg tx_even_parity; reg tx_stick1_parity; reg tx_stick0_parity; reg tx_parity_enabled; reg tx_parity_wrong; reg tx_framing_wrong; // TX logic signals reg [23:0] tx_glitch_num; reg start_tx_glitch_cnt; reg [31:0] tx_glitch_cnt; reg tx_glitch; reg tx_break_enable; reg [15:0] tx_break_num; reg start_tx_break_cnt; reg [31:0] tx_break_cnt; reg tx_break; // TX test signals reg [7:0] sent_data; reg tx_accept_next_framing_err; reg tx_framing_err; reg tx_framing_glitch_err; // TX events event device_sent_packet; event sent_packet_received; // Clock generation //################# // Example of TESTBENCH's task for setting UART clock period: // ---------------- // task set_uart_clk_period; // input [31:0] clk_period; // begin // //@(posedge testbench.uart_device.clk); // testbench.uart_device.T_clk_period = clk_period; // end // endtask // set_uart_clk_period // ---------------- // Example of TESTBENCH's task for setting UART clock rising edge // delayed for time_delay_i after WB clock rising edge: // ---------------- // task uart_clk_follows_wb_clk; // input [31:0] time_delay_i; // integer time_delay; // begin // time_delay = time_delay_i; // @(posedge testbench.uart_device.clk); // testbench.uart_device.clk_en = 1'b0; // @(posedge wb_clk); // #time_delay testbench.uart_device.clk = 1'b1; // testbench.uart_device.clk_en = 1'b1; // end // endtask // uart_clk_follows_wb_clk // ---------------- // rx_clk rising edge always@(posedge rx_clk) if (rx_clk_en) #(T_clk_period / 2) rx_clk = 1'b0; // rx_clk falling edge always@(negedge rx_clk) if (rx_clk_en) #(T_clk_period / 2) rx_clk = 1'b1; // tx_clk rising edge always@(posedge tx_clk) if (tx_clk_en) #((T_clk_period + T_clk_delay) / 2) tx_clk = 1'b0; // tx_clk falling edge always@(negedge tx_clk) if (tx_clk_en) #((T_clk_period + T_clk_delay) / 2) tx_clk = 1'b1; // tx_clk_divided rising edge always@(posedge tx_clk_divided) if (tx_clk_divided_en) #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) tx_clk_divided = 1'b0; // tx_clk_divided falling edge always@(negedge tx_clk_divided) if (tx_clk_divided_en) #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) tx_clk_divided = 1'b1; // Inital CLK values initial begin:device rx_clk = 1'b0; tx_clk = 1'b0; tx_clk_divided = 1'b0; end // IN/OUT assignments //################### // UART output assign srx_o = (tx ^ tx_glitch) & ~tx_break; // Modem output assign cts_o = 0; assign dsr_o = 0; assign ri_o = 0; assign dcd_o = 0; // UART input assign rx = stx_i; // Modem input assign rts = rts_i; assign dtr = dtr_i; // UART receiver //############## // Initial values for RX initial begin // Default LENGTH rx_length = 8; // Default PARITY rx_odd_parity = 1'b0; rx_even_parity = 1'b0; rx_stick1_parity = 1'b0; rx_stick0_parity = 1'b0; rx_parity_enabled = 1'b0; // Default STOP rx_stop_bit_1 = 1'b1; rx_stop_bit_1_5 = 1'b0; rx_stop_bit_2 = 1'b0; end // Total length of RX packet (for proper generation of the rx_packet_end signal): // data length + parity + 1 stop bit + second stop bit (when enabled) assign rx_total_length = rx_length + rx_parity_enabled + 1 + rx_stop_bit_2; // +1 is used because start bit was not included in rx_total_length. assign rx_break_detection_length = rx_total_length + 1; // Generating rx_clk_cnt_en signal. always@(posedge rx_clk) begin if (~rx_clk_cnt_en) begin wait (~rx); end rx_clk_cnt_en = 1; rx_packet_end = 0; wait (rx_packet_end); rx_clk_cnt_en = 0; wait (rx); // Must be high to continue, because of break condition end // Counter used in data reception always@(posedge rx_clk) begin if (rx_clk_cnt_en) begin if (rx_clk_cnt == (8 * T_divisor - 1) & rx) // False start bit detection rx_packet_end = 1; if (rx_clk_cnt_en) // Checking is still enabled after devisor clocks rx_clk_cnt <= #1 rx_clk_cnt + 1; else rx_clk_cnt <= #1 0; end else rx_clk_cnt <= #1 0; end // Delayed rx_packet_end signal always@(posedge rx_clk) rx_packet_end_q = rx_packet_end; // Generating sample clock and end of the frame (Received data is sampled with this clock) always@(posedge rx_clk) begin if (rx_clk_cnt == 8 * T_divisor - 1) rx_bit_index = 0; else if (rx_clk_cnt == (8 * T_divisor + 16 * T_divisor * (rx_bit_index + 1) - 1)) begin rx_sample_clock = 1; rx_bit_index = rx_bit_index + 1; if (rx_bit_index == rx_total_length) rx_packet_end = 1; end else rx_sample_clock = 0; end // Sampling data (received data) always@(posedge rx_clk) begin if (rx_sample_clock) begin if (rx_bit_index <= rx_length) // Sampling data begin rx_stop_bit_index <= 0; // Stop bit index reset at the beginning of the data stage // $display("\t\t\t\t\t\t\t(rx_bit_index = %0d) Reading data bits = %0x", rx_bit_index, rx); rx_data[rx_bit_index - 1] = rx; if (rx_bit_index == rx_length) -> device_received_last_bit; end else begin if (rx_bit_index == (rx_length + 1)) begin if (rx_parity_enabled) begin // $display("\t\t\t\t\t\t\t(rx_bit_index = %0d) Reading parity bits = %0x", rx_bit_index, rx); end else begin -> device_received_stop_bit; rx_stop[rx_stop_bit_index] = rx; rx_stop_bit_index <= rx_stop_bit_index + 1; end rx_parity = rx & rx_parity_enabled; end if (rx_bit_index >= (rx_length + 1 + rx_parity_enabled)) begin // $display("\t\t\t\t\t\t\t(rx_bit_index = %0d) Reading stop bits = %0x", rx_bit_index, rx); rx_stop[rx_stop_bit_index] = rx; rx_stop_bit_index <= rx_stop_bit_index + 1; end end end // Filling the rest of the data with 0 if (rx_length == 5) rx_data[7:5] = 0; if (rx_length == 6) rx_data[7:6] = 0; if (rx_length == 7) rx_data[7] = 0; // Framing error generation // When 1 or 1.5 stop bits are used, only first stop bit is checked rx_framing_error = (rx_stop_bit_1 | rx_stop_bit_1_5) ? ~rx_stop[0] : ~(&rx_stop[1:0]); // Parity error generation if (rx_odd_parity) rx_parity_error = ~(^{rx_data, rx_parity}); else if (rx_even_parity) rx_parity_error = ^{rx_data, rx_parity}; else if (rx_stick0_parity) rx_parity_error = rx_parity; else if (rx_stick1_parity) rx_parity_error = ~rx_parity; else rx_parity_error = 0; end // Break detection always@(posedge rx_clk) begin rx_break_detected_q <= rx_break_detected; if (rx) begin rx_break_cnt = 0; // Reseting counter rx_break_detected = 0; // Clearing break detected signal end else rx_break_cnt = rx_break_cnt + 1; if (rx_break_cnt == rx_break_detection_length * 16 * T_divisor) begin // $display("\n(%0t) Break_detected.", $time); rx_break_detected <= 1; -> device_detected_rx_break; end end // Writing received data always@(posedge rx_clk) begin if ((rx_packet_end & ~rx_packet_end_q) | (rx_break_detected & ~rx_break_detected_q)) begin wait (rx | rx_break_detected); // Waiting for "end of cycle detected" or "break to be activated" // rx_break_detected // rx_length // rx_parity_enabled // rx_odd_parity | rx_even_parity | rx_stick1_parity | rx_stick0_parity // rx_stop_bit_1 | rx_stop_bit_1_5 | rx_stop_bit_2 -> device_received_packet; end end // UART transmitter //################# // Initial values for TX initial begin // Default LENGTH tx_length = 8; // Default PARITY tx_odd_parity = 1'b0; tx_even_parity = 1'b0; tx_stick1_parity = 1'b0; tx_stick0_parity = 1'b0; tx_parity_enabled = 1'b0; // Default CORRECT PARITY tx_parity_wrong = 1'b0; // Default CORRECT FRAME tx_framing_wrong = 1'b0; tx_framing_err = 0; tx_framing_glitch_err = 0; // Default NO GLITCH tx_glitch_num = 24'h0; // Default NO BREAK tx_break_enable = 1'b0; tx_break_num = 16'h0; end // Counter for TX glitch generation always@(posedge tx_clk or posedge start_tx_glitch_cnt) begin if (start_tx_glitch_cnt) begin tx_glitch_cnt <= tx_glitch_cnt + 1; if (tx_glitch_cnt == ((tx_glitch_num - 1) * T_divisor)) tx_glitch = 1'b1; else if (tx_glitch_cnt == (tx_glitch_num * T_divisor)) begin tx_glitch = 1'b0; start_tx_glitch_cnt = 1'b0; end end else tx_glitch_cnt <= 0; end // Break setting & break counter always@(posedge tx_clk) begin if (tx_break_enable && (tx_break_cnt == (tx_break_num * T_divisor))) begin start_tx_break_cnt = 0; end else if (start_tx_break_cnt) begin tx_break_cnt = tx_break_cnt + 1; tx_break = 1; end else begin tx_break_cnt = 0; tx_break = 0; end end // Sending packets task send_packet; input tx_random_i; input [7:0] tx_data_i; input num_of_tx_data_i; reg [7:0] tx_data; reg tx_parity_xor; integer tx_bit_index; integer num_of_tx_data; reg last_tx_data; begin // SEVERE ERROR if (// WRONG combinations of parameters for testing ((T_clk_delay != 0) && (tx_parity_wrong || tx_framing_wrong)) || ((T_clk_delay != 0) && (tx_glitch_num != 0)) || ((T_clk_delay != 0) && (tx_break_enable)) || ((tx_parity_wrong || tx_framing_wrong) && (tx_glitch_num != 0)) || ((tx_parity_wrong || tx_framing_wrong) && (tx_break_enable)) || ((tx_glitch_num != 0) && (tx_break_enable)) || (tx_glitch_num > ((tx_length + 2'h2 + tx_parity_enabled) * 16 * T_divisor)) || // with STOP bit // (tx_glitch_num > ((tx_length + 2'h1 + tx_parity_enabled) * 16 * T_divisor)) || // without STOP bit // WRONG input parameters (num_of_tx_data_i == 0) || ((num_of_tx_data_i > 1) && tx_break_enable) ) begin `SEVERE_ERROR("WRONG combination of parameters for testing UART receiver"); end for (num_of_tx_data = 0; num_of_tx_data < num_of_tx_data_i; num_of_tx_data = (num_of_tx_data + 1'b1)) begin if (num_of_tx_data == (num_of_tx_data_i - 1'b1)) last_tx_data = 1'b1; else last_tx_data = 0; // TX data if (~tx_random_i) tx_data = tx_data_i; else tx_data = {$random}%256; // 0..255 // Sending start bit @(posedge tx_clk_divided); tx = 0; if (tx_glitch_num > 0) start_tx_glitch_cnt = 1; // enabling tx_glitch generation if (tx_break_enable) start_tx_break_cnt = 1; // Start counter that counts break tx_length // Wait for almost 1 bit #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor); // wait half period #((((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) - 2); // wait 2 less than half period // Sending tx_data bits for (tx_bit_index = 0; tx_bit_index < tx_length; tx_bit_index = tx_bit_index + 1) begin @(posedge tx_clk_divided); tx = tx_data[tx_bit_index]; end // Wait for almost 1 bit #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor); // wait half period #((((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) - 2); // wait 2 less than half period sent_data = tx_data; // Calculating parity if(tx_length == 5) begin tx_parity_xor = ^tx_data[4:0]; end else if(tx_length == 6) begin tx_parity_xor = ^tx_data[5:0]; end else if(tx_length == 7) begin tx_parity_xor = ^tx_data[6:0]; end else if(tx_length == 8) begin tx_parity_xor = ^tx_data[7:0]; end else $display("WRONG length of TX data packet"); // Sending parity bit if (tx_parity_enabled) begin @(posedge tx_clk_divided); if (tx_odd_parity) tx = tx_parity_wrong ^ (~tx_parity_xor); else if (tx_even_parity) tx = tx_parity_wrong ^ tx_parity_xor; else if (tx_stick1_parity) tx = tx_parity_wrong ^ 1; else if (tx_stick0_parity) tx = tx_parity_wrong ^ 0; // Wait for almost 1 bit #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor); // wait half period #((((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) - 2); // wait 2 less than half period end // Sending stop bit if (~tx_framing_wrong || (tx_glitch_num != ((((tx_length + 2'h2 + tx_parity_enabled) * 2) - 1'b1) * 8 * T_divisor))) begin @(posedge tx_clk_divided); tx = 1; // Wait for almost 1 bit #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor); // wait half period #((((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) - 2); // wait 2 less than half period -> device_sent_packet; @(sent_packet_received); end else if (~tx_framing_wrong || (tx_glitch_num == ((((tx_length + 2'h2 + tx_parity_enabled) * 2) - 1'b1) * 8 * T_divisor))) begin @(posedge tx_clk_divided); tx = 1; // Wait for 1 bit @(posedge tx_clk_divided); // this will be like 2. stop bit -> device_sent_packet; @(sent_packet_received); end else if (tx_framing_wrong && last_tx_data) begin @(posedge tx_clk_divided); // Wrong stop | start bit tx = 0; @(posedge tx_clk_divided); -> device_sent_packet; @(sent_packet_received); tx_framing_wrong = 0; // TX data tx = 1; tx_data = 8'hFF; // Sending tx_data bits for (tx_bit_index = 0; tx_bit_index < tx_length; tx_bit_index = tx_bit_index + 1) begin @(posedge tx_clk_divided); tx = tx_data[tx_bit_index]; end // Wait for almost 1 bit #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor); // wait half period #((((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) - 2); // wait 2 less than half period sent_data = tx_data; // Calculating parity if(tx_length == 5) begin tx_parity_xor = ^tx_data[4:0]; end else if(tx_length == 6) begin tx_parity_xor = ^tx_data[5:0]; end else if(tx_length == 7) begin tx_parity_xor = ^tx_data[6:0]; end else if(tx_length == 8) begin tx_parity_xor = ^tx_data[7:0]; end else $display("WRONG length of TX data packet"); // Sending parity bit if (tx_parity_enabled) begin @(posedge tx_clk_divided); if (tx_odd_parity) tx = tx_parity_wrong ^ (~tx_parity_xor); else if (tx_even_parity) tx = tx_parity_wrong ^ tx_parity_xor; else if (tx_stick1_parity) tx = tx_parity_wrong ^ 1; else if (tx_stick0_parity) tx = tx_parity_wrong ^ 0; // Wait for almost 1 bit #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor); // wait half period #((((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) - 2); // wait 2 less than half period end // Stop bit @(posedge tx_clk_divided); tx = 1; // Wait for almost 1 bit #(((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor); // wait half period #((((T_clk_period + T_clk_delay) / 2) * 16 * T_divisor) - 2); // wait 2 less than half period -> device_sent_packet; @(sent_packet_received); tx_framing_wrong = 1'b1; end else if (last_tx_data) begin @(posedge tx_clk_divided); -> device_sent_packet; @(sent_packet_received); end end end endtask // send_packet endmodule