# # Copyright 2018 Ettus Research, a National Instruments Company # # SPDX-License-Identifier: GPL-3.0-or-later # """ Rhodium dboard implementation module """ from __future__ import print_function import os import threading from six import iterkeys, iteritems from usrp_mpm import lib # Pulls in everything from C++-land from usrp_mpm.dboard_manager import DboardManagerBase from usrp_mpm.dboard_manager.rh_periphs import TCA6408, FPGAtoDbGPIO, FPGAtoLoDist from usrp_mpm.dboard_manager.rh_init import RhodiumInitManager from usrp_mpm.dboard_manager.rh_periphs import RhCPLD from usrp_mpm.dboard_manager.rh_periphs import DboardClockControl from usrp_mpm.cores import nijesdcore from usrp_mpm.dboard_manager.adc_rh import AD9695Rh from usrp_mpm.dboard_manager.dac_rh import DAC37J82Rh from usrp_mpm.mpmlog import get_logger from usrp_mpm.sys_utils.uio import UIO from usrp_mpm.sys_utils.udev import get_eeprom_paths from usrp_mpm.bfrfs import BufferFS from usrp_mpm.sys_utils.dtoverlay import apply_overlay_safe, rm_overlay_safe ############################################################################### # SPI Helpers ############################################################################### def create_spidev_iface_lmk(dev_node): """ Create a regs iface from a spidev node """ return lib.spi.make_spidev_regs_iface( dev_node, 1000000, # Speed (Hz) 0, # SPI mode 8, # Addr shift 0, # Data shift 1<<23, # Read flag 0 # Write flag ) def create_spidev_iface_cpld(dev_node): """ Create a regs iface from a spidev node (CPLD register protocol) """ return lib.spi.make_spidev_regs_iface( dev_node, 1000000, # Speed (Hz) 0, # SPI mode 17, # Addr shift 0, # Data shift 1<<16, # Read flag 0 # Write flag ) def create_spidev_iface_cpld_gain_loader(dev_node): """ Create a regs iface from a spidev node (CPLD gain table protocol) """ return lib.spi.make_spidev_regs_iface( dev_node, 1000000, # Speed (Hz) 0, # SPI mode 16, # Addr shift 4, # Data shift 0, # Read flag 1<<3 # Write flag ) def create_spidev_iface_phasedac(dev_node): """ Create a regs iface from a spidev node (AD5683) The data shift for the SPI interface is defined based on the command operation defined in the AD5683 datasheet. Each SPI transaction is 24-bit: [23:20] -> command; [19:0] -> data The 4 LSBs are all don't cares (Xs), regardless of the DAC's resolution. Therefore, to simplify DAC writes, we compensate for all the don't care bits with the data shift parameter here (4), thus 16-bit data field. Special care must be taken when writing to the control register, since the 6-bit payload is placed in [19:14] of the SPI transaction, which is equivalent to bits [15:10] of our 16-bit data field. For futher details, please refer to the AD5683's datasheet. """ return lib.spi.make_spidev_regs_iface( str(dev_node), 1000000, # Speed (Hz) 1, # SPI mode 20, # Addr shift 4, # Data shift 0, # Read flag (phase DAC is write-only) 0, # Write flag ) def create_spidev_iface_adc(dev_node): """ Create a regs iface from a spidev node (AD9695) """ return lib.spi.make_spidev_regs_iface( str(dev_node), 1000000, # Speed (Hz) 0, # SPI mode 8, # Addr shift 0, # Data shift 1<<23, # Read flag 0, # Write flag ) def create_spidev_iface_dac(dev_node): """ Create a regs iface from a spidev node (DAC37J82) """ return lib.spi.make_spidev_regs_iface( str(dev_node), 1000000, # Speed (Hz) 0, # SPI mode 16, # Addr shift 0, # Data shift 1<<23, # Read flag 0, # Write flag ) ############################################################################### # Main dboard control class ############################################################################### class Rhodium(DboardManagerBase): """ Holds all dboard specific information and methods of the Rhodium dboard """ ######################################################################### # Overridables # # See DboardManagerBase for documentation on these fields ######################################################################### pids = [0x152] #file system path to i2c-adapter/mux base_i2c_adapter = '/sys/class/i2c-adapter' # Maps the chipselects to the corresponding devices: spi_chipselect = { "cpld" : 0, "cpld_gain_loader" : 0, "lmk" : 1, "phase_dac" : 2, "adc" : 3, "dac" : 4} ### End of overridables ################################################# # Class-specific, but constant settings: spi_factories = { "cpld": create_spidev_iface_cpld, "cpld_gain_loader": create_spidev_iface_cpld_gain_loader, "lmk": create_spidev_iface_lmk, "phase_dac": create_spidev_iface_phasedac, "adc": create_spidev_iface_adc, "dac": create_spidev_iface_dac } # Map I2C channel to slot index i2c_chan_map = {0: 'i2c-9', 1: 'i2c-10'} user_eeprom = { 2: { # RevC 'label': "e0004000.i2c", 'offset': 1024, 'max_size': 32786 - 1024, 'alignment': 1024, }, } default_master_clock_rate = 245.76e6 default_time_source = 'internal' default_current_jesd_rate = 4915.2e6 # Provide a mapping of direction and pin number to # pin name and active state (0 = active-low) for # LO out ports lo_out_pin_map = { 'RX' : [('RX_OUT0_CTRL', 0), ('RX_OUT1_CTRL', 1), ('RX_OUT2_CTRL', 0), ('RX_OUT3_CTRL', 1)], 'TX' : [('TX_OUT0_CTRL', 0), ('TX_OUT1_CTRL', 1), ('TX_OUT2_CTRL', 0), ('TX_OUT3_CTRL', 1)]} # Provide mapping of direction to pin name for LO # in port lo_in_pin_map = { 'RX' : 'RX_INSWITCH_CTRL', 'TX' : 'TX_INSWITCH_CTRL'} def __init__(self, slot_idx, **kwargs): super(Rhodium, self).__init__(slot_idx, **kwargs) self.log = get_logger("Rhodium-{}".format(slot_idx)) self.log.trace("Initializing Rhodium daughterboard, slot index %d", self.slot_idx) self.rev = int(self.device_info['rev']) self.log.trace("This is a rev: {}".format(chr(65 + self.rev))) # This is a default ref clock freq, it must be updated before init() is # called! self.ref_clock_freq = None # These will get updated during init() self.master_clock_rate = None self.sampling_clock_rate = None self.current_jesd_rate = None # Predeclare some attributes to make linter happy: self.lmk = None self._port_expander = None self._lo_dist = None self.cpld = None # If _init_args is None, it means that init() hasn't yet been called. self._init_args = None # Now initialize all peripherals. If that doesn't work, put this class # into a non-functional state (but don't crash, or we can't talk to it # any more): try: self._init_periphs() self._periphs_initialized = True except Exception as ex: self.log.error("Failed to initialize peripherals: %s", str(ex)) self._periphs_initialized = False def _init_periphs(self): """ Initialize power and peripherals that don't need user-settings """ def _get_i2c_dev(): " Return the I2C path for this daughterboard " import pyudev context = pyudev.Context() i2c_dev_path = os.path.join( self.base_i2c_adapter, self.i2c_chan_map[self.slot_idx] ) return pyudev.Devices.from_sys_path(context, i2c_dev_path) def _init_spi_devices(): " Returns abstraction layers to all the SPI devices " self.log.trace("Loading SPI interfaces...") return { key: self.spi_factories[key](self._spi_nodes[key]) for key in self._spi_nodes } def _init_dboard_regs(): " Create a UIO object to talk to dboard regs " self.log.trace("Getting UIO to talk to dboard regs...") return UIO( label="dboard-regs-{}".format(self.slot_idx), read_only=False ) self._port_expander = TCA6408(_get_i2c_dev()) self._daughterboard_gpio = FPGAtoDbGPIO(self.slot_idx) # TODO: applying the overlay without checking for the presence of the # LO dist board will create a kernel error. Fix this when the I2C API # is implemented by checking if the board is present before applying. try: apply_overlay_safe('n321') self._lo_dist = FPGAtoLoDist(_get_i2c_dev()) except RuntimeError: self._lo_dist = None self.log.debug("Turning on Module and RF power supplies") self._power_on() self._spi_ifaces = _init_spi_devices() self.log.debug("Loaded SPI interfaces!") self.cpld = RhCPLD(self._spi_ifaces['cpld'], self.log) self.log.debug("Loaded CPLD interfaces!") self.radio_regs = _init_dboard_regs() self.radio_regs._open() # Create DAC interface (analog output is disabled). self.log.trace("Creating DAC control object...") self.dac = DAC37J82Rh(self.slot_idx, self._spi_ifaces['dac'], self.log) # Create ADC interface (JESD204B link is powered down). self.log.trace("Creating ADC control object...") self.adc = AD9695Rh(self.slot_idx, self._spi_ifaces['adc'], self.log) self.log.info("Succesfully loaded all peripherals!") def _power_on(self): " Turn on power to daughterboard " self.log.trace("Powering on slot_idx={}...".format(self.slot_idx)) self._daughterboard_gpio.set(FPGAtoDbGPIO.DB_POWER_ENABLE, 1) self._daughterboard_gpio.set(FPGAtoDbGPIO.RF_POWER_ENABLE, 1) # Check each power good signal def _power_off(self): " Turn off power to daughterboard " self.log.trace("Powering off slot_idx={}...".format(self.slot_idx)) self._daughterboard_gpio.set(FPGAtoDbGPIO.DB_POWER_ENABLE, 0) self._daughterboard_gpio.set(FPGAtoDbGPIO.RF_POWER_ENABLE, 0) def _init_user_eeprom(self, eeprom_info): """ Reads out user-data EEPROM, and intializes a BufferFS object from that. """ self.log.trace("Initializing EEPROM user data...") eeprom_paths = get_eeprom_paths(eeprom_info.get('label')) self.log.trace("Found the following EEPROM paths: `{}'".format( eeprom_paths)) eeprom_path = eeprom_paths[self.slot_idx] self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path)) user_eeprom_offset = eeprom_info.get('offset', 0) self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset) user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:] self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data)) # FIXME verify EEPROM sectors return BufferFS( user_eeprom_data, max_size=eeprom_info.get('max_size'), alignment=eeprom_info.get('alignment', 1024), log=self.log ), eeprom_path def init(self, args): """ Execute necessary init dance to bring up dboard """ # Sanity checks and input validation: self.log.info("init() called with args `{}'".format( ",".join(['{}={}'.format(x, args[x]) for x in args]) )) if not self._periphs_initialized: error_msg = "Cannot run init(), peripherals are not initialized!" self.log.error(error_msg) raise RuntimeError(error_msg) # Check if ref clock freq changed (would require a full init) ref_clk_freq_changed = False if 'ref_clk_freq' in args: new_ref_clock_freq = float(args['ref_clk_freq']) assert new_ref_clock_freq in (10e6, 20e6, 25e6) if new_ref_clock_freq != self.ref_clock_freq: self.ref_clock_freq = new_ref_clock_freq ref_clk_freq_changed = True self.log.debug( "Updating reference clock frequency to {:.02f} MHz!" .format(self.ref_clock_freq / 1e6) ) assert self.ref_clock_freq is not None # Check if master clock freq changed (would require a full init) new_master_clock_rate = \ float(args.get('master_clock_rate', self.default_master_clock_rate)) assert new_master_clock_rate in (200e6, 245.76e6, 250e6), \ "Invalid master clock rate: {:.02f} MHz".format(new_master_clock_rate / 1e6) master_clock_rate_changed = new_master_clock_rate != self.master_clock_rate if master_clock_rate_changed: self.master_clock_rate = new_master_clock_rate self.log.debug("Updating master clock rate to {:.02f} MHz!".format( self.master_clock_rate / 1e6 )) # From the host's perspective (i.e. UHD), master_clock_rate is thought as # the data rate that the radio NoC block works on (200/245.76/250 MSPS). # For Rhodium, that rate is different from the RF sampling rate = JESD rate # (400/491.52/500 MHz). The FPGA has fixed half-band filters that decimate # and interpolate between the radio block and the JESD core. # Therefore, the board configuration through MPM relies on the sampling freq., # so a sampling_clock_rate value is internally set based on the master_clock_rate # parameter given by the host. self.sampling_clock_rate = 2 * self.master_clock_rate self.log.trace("Updating sampling clock rate to {:.02f} MHz!".format( self.sampling_clock_rate / 1e6 )) # Track if we're able to do a "fast reinit", which means there were no # major changes and can skip all slow initialization steps. fast_reinit = \ not bool(args.get("force_reinit", False)) \ and not master_clock_rate_changed \ and not ref_clk_freq_changed if fast_reinit: self.log.debug("Attempting fast re-init with the following settings: " "master_clock_rate={} MHz ref_clk_freq={} MHz" .format(self.master_clock_rate / 1e6, self.ref_clock_freq / 1e6)) init_result = True else: init_result = RhodiumInitManager(self, self._spi_ifaces).init(args) if init_result: self._init_args = args return init_result def get_user_eeprom_data(self): """ Return a dict of blobs stored in the user data section of the EEPROM. """ return { blob_id: self.eeprom_fs.get_blob(blob_id) for blob_id in iterkeys(self.eeprom_fs.entries) } def set_user_eeprom_data(self, eeprom_data): """ Update the local EEPROM with the data from eeprom_data. The actual writing to EEPROM can take some time, and is thus kicked into a background task. Don't call set_user_eeprom_data() quickly in succession. Also, while the background task is running, reading the EEPROM is unavailable and MPM won't be able to reboot until it's completed. However, get_user_eeprom_data() will immediately return the correct data after this method returns. """ for blob_id, blob in iteritems(eeprom_data): self.eeprom_fs.set_blob(blob_id, blob) self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path)) eeprom_offset = self.user_eeprom[self.rev]['offset'] def _write_to_eeprom_task(path, offset, data, log): " Writer task: Actually write to file " # Note: This can be sped up by only writing sectors that actually # changed. To do so, this function would need to read out the # current state of the file, do some kind of diff, and then seek() # to the different sectors. When very large blobs are being # written, it doesn't actually help all that much, of course, # because in that case, we'd anyway be changing most of the EEPROM. with open(path, 'r+b') as eeprom_file: log.trace("Seeking forward to `{}'".format(offset)) eeprom_file.seek(eeprom_offset) log.trace("Writing a total of {} bytes.".format( len(self.eeprom_fs.buffer))) eeprom_file.write(data) log.trace("EEPROM write complete.") thread_id = "eeprom_writer_task_{}".format(self.slot_idx) if any([x.name == thread_id for x in threading.enumerate()]): # Should this be fatal? self.log.warn("Another EEPROM writer thread is already active!") writer_task = threading.Thread( target=_write_to_eeprom_task, args=( self.eeprom_path, eeprom_offset, self.eeprom_fs.buffer, self.log ), name=thread_id, ) writer_task.start() # Now return and let the copy finish on its own. The thread will detach # and MPM this process won't terminate until the thread is complete. # This does not stop anyone from killing this process (and the thread) # while the EEPROM write is happening, though. def enable_lo_export(self, direction, enable): """ For N321 devices. If enable is true, connect the RX 1:4 splitter to the daughterboard LO export. If enable is false, connect the splitter to LO input port 1 instead. Asserts if there is no LO distribution board attached (e.g. device is not an N321, or this is the daughterboard in slot B) """ assert self._lo_dist is not None assert direction in ('RX', 'TX') pin = self.lo_in_pin_map[direction] pin_val = 0 if enable else 1 self.log.debug("LO Distribution: 1:4 splitter connected to {0} {1}".format( direction, {True: "DB export", False: "Input 0"}[enable])) self.log.trace("Net name: {0}, Pin value: {1}".format(pin, pin_val)) self._lo_dist.set(pin, pin_val) def enable_lo_output(self, direction, port_number, enable): """ For N321 devices. If enable is true, connect the RX 1:4 splitter to the daughterboard LO export. If enable is false, connect the splitter to LO input port 1 instead. Asserts if there is no LO distribution board attached (e.g. device is not an N321, or this is the daughterboard in slot B) """ assert self._lo_dist is not None assert direction in ('RX', 'TX') assert port_number in (0, 1, 2, 3) pin_info = self.lo_out_pin_map[direction][port_number] # enable XNOR active_high = desired pinout value pin_val = 1 if not (enable ^ pin_info[1]) else 0 self.log.debug("LO Distribution: {0} Out{1} is {2}".format( direction, port_number, {True: "active", False: "terminated"}[enable])) self.log.trace("Net name: {0}, Pin value: {1}".format(pin_info[0], pin_val)) self._lo_dist.set(pin_info[0], pin_val) def is_lo_dist_present(self): return self._lo_dist is not None ########################################################################## # Clocking control APIs ########################################################################## def set_clk_safe_state(self): """ Disable all components that could react badly to a sudden change in clocking. After calling this method, all clocks will be off. Calling _reinit() will turn them on again. """ if self._init_args is None: # Then we're already in a safe state return # Put the ADC and the DAC in a safe state because they receive a LMK's clock. # The DAC37J82 datasheet only recommends disabling its analog output before # a clock is provided to the chip. self.dac.tx_enable(False) self.adc.power_down_channel(True) # Clear the Sample Clock enables and place the MMCM in reset. db_clk_control = DboardClockControl(self.radio_regs, self.log) db_clk_control.reset_mmcm() # Place the JESD204b core in reset, mainly to reset QPLL/CPLLs. jesdcore = nijesdcore.NIJESDCore(self.radio_regs, self.slot_idx, **RhodiumInitManager.JESD_DEFAULT_ARGS) jesdcore.reset() # The reference clock is handled elsewhere since it is a motherboard- # level clock. def _reinit(self, master_clock_rate): """ This will re-run init(). We store all the settings in _init_args, so we will bring the device into the same state that it was before, with the exception of frequency and gain. Those need to be re-set by UHD in order not to invalidate the UHD caches. """ args = self._init_args args["master_clock_rate"] = master_clock_rate args["ref_clk_freq"] = self.ref_clock_freq # If we add API calls to reset the cals, they need to update # self._init_args self.master_clock_rate = None # <= This will force a re-init self.init(args) # self.master_clock_rate is now OK again def set_master_clock_rate(self, rate): """ Set the master clock rate to rate. Note this will trigger a re-initialization of the entire clocking, unless rate matches the current master clock rate. """ if rate == self.master_clock_rate: self.log.debug( "New master clock rate assignment matches previous assignment. " "Ignoring set_master_clock_rate() command.") return self.master_clock_rate self._reinit(rate) return rate def get_master_clock_rate(self): " Return master clock rate (== sampling rate / 2) " return self.master_clock_rate def update_ref_clock_freq(self, freq, **kwargs): """ Call this function if the frequency of the reference clock changes (the 10, 20, 25 MHz one). If this function is called while the device is in an initialized state, it will also re-trigger the initialization sequence. No need to set the device in a safe state because (presumably) the user has already switched the clock rate externally. All we need to do now is re-initialize with the new rate. """ assert freq in (10e6, 20e6, 25e6), \ "Invalid ref clock frequency: {}".format(freq) self.log.trace("Changing ref clock frequency to %f MHz", freq/1e6) self.ref_clock_freq = freq if self._init_args is not None: self._reinit(self.master_clock_rate) ########################################################################## # Debug ########################################################################## def cpld_peek(self, addr): """ Debug for accessing the CPLD via the RPC shell. """ self.log.trace("CPLD Signature: 0x{:X}".format(self.cpld.peek(0x00))) revision_msb = self.cpld.peek16(0x04) self.log.trace("CPLD Revision: 0x{:X}" .format(self.cpld.peek16(0x03) | (revision_msb << 16))) return self.cpld.peek16(addr) def cpld_poke(self, addr, data): """ Debug for accessing the CPLD via the RPC shell. """ self.log.trace("CPLD Signature: 0x{:X}".format(self.cpld.peek16(0x00))) revision_msb = self.cpld.peek16(0x04) self.log.trace("CPLD Revision: 0x{:X}" .format(self.cpld.peek16(0x03) | (revision_msb << 16))) self.cpld.poke16(addr, data) return self.cpld.peek16(addr) def lmk_peek(self, addr): """ Debug for accessing the LMK via the RPC shell. """ lmk_regs = self._spi_ifaces['lmk'] self.log.trace("LMK Chip ID: 0x{:X}".format(lmk_regs.peek8(0x03))) return lmk_regs.peek8(addr) def lmk_poke(self, addr, data): """ Debug for accessing the LMK via the RPC shell. """ lmk_regs = self._spi_ifaces['lmk'] self.log.trace("LMK Chip ID: 0x{:X}".format(lmk_regs.peek8(0x03))) lmk_regs.poke8(addr, data) return lmk_regs.peek8(addr) def pdac_poke(self, addr, data): """ Debug for accessing the Phase DAC via the RPC shell. """ pdac_regs = self._spi_ifaces['phase_dac'] pdac_regs.poke16(addr, data) return def adc_peek(self, addr): """ Debug for accessing the ADC via the RPC shell. """ adc_regs = self._spi_ifaces['adc'] self.log.trace("ADC Chip ID: 0x{:X}".format(adc_regs.peek8(0x04))) return adc_regs.peek8(addr) def adc_poke(self, addr, data): """ Debug for accessing the ADC via the RPC shell """ adc_regs = self._spi_ifaces['adc'] self.log.trace("ADC Chip ID: 0x{:X}".format(adc_regs.peek8(0x04))) adc_regs.poke8(addr, data) return adc_regs.peek8(addr) def dump_jesd_core(self): """ Debug for reading out all JESD core registers via RPC shell """ radio_regs = UIO(label="dboard-regs-{}".format(self.slot_idx)) for i in range(0x2000, 0x2110, 0x10): print(("0x%04X " % i), end=' ') for j in range(0, 0x10, 0x4): print(("%08X" % radio_regs.peek32(i + j)), end=' ') print("")