# # Copyright 2018 Ettus Research, a National Instruments Company # # SPDX-License-Identifier: GPL-3.0-or-later # """ E320 dboard (RF and control) implementation module """ import threading from usrp_mpm import lib # Pulls in everything from C++-land from usrp_mpm.bfrfs import BufferFS from usrp_mpm.chips import ADF400x from usrp_mpm.dboard_manager import DboardManagerBase, AD936xDboard from usrp_mpm.mpmlog import get_logger from usrp_mpm.sys_utils.udev import get_eeprom_paths from usrp_mpm.periph_manager.e320_periphs import MboardRegsControl DEFAULT_MASTER_CLOCK_RATE = 16e6 ############################################################################### # Main dboard control class ############################################################################### class Neon(DboardManagerBase, AD936xDboard): """ Holds all dboard specific information and methods of the neon dboard """ ######################################################################### # Overridables # # See DboardManagerBase for documentation on these fields ######################################################################### pids = [0xe320] rx_sensor_callback_map = { 'ad9361_temperature': 'get_catalina_temp_sensor', 'rssi' : 'get_rssi_sensor', # For backward compatibility reasons we have the same sensor with two # different names 'lo_lock' : 'get_rx_lo_lock_sensor', 'lo_locked' : 'get_rx_lo_lock_sensor', } tx_sensor_callback_map = { 'ad9361_temperature': 'get_catalina_temp_sensor', # For backward compatibility reasons we have the same sensor with two # different names 'lo_lock' : 'get_tx_lo_lock_sensor', 'lo_locked' : 'get_tx_lo_lock_sensor', } # Maps the chipselects to the corresponding devices: spi_chipselect = {"catalina": 0, "adf4002": 1} ### End of overridables ################################################# # MB regs label: Needed to access the lock bit mboard_regs_label = "mboard-regs" # This map describes how the user data is stored in EEPROM. If a dboard rev # changes the way the EEPROM is used, we add a new entry. If a dboard rev # is not found in the map, then we go backward until we find a suitable rev user_eeprom = { 0: { 'label': "e0004000.i2c", 'offset': 1024, 'max_size': 32786 - 1024, 'alignment': 1024, }, } def __init__(self, slot_idx, **kwargs): DboardManagerBase.__init__(self, slot_idx, **kwargs) AD936xDboard.__init__( self, lambda: MboardRegsControl(self.mboard_regs_label, self.log)) self.log = get_logger("Neon-{}".format(slot_idx)) self.log.trace("Initializing Neon daughterboard, slot index %d", self.slot_idx) self.rev = int(self.device_info['rev']) self.log.trace("This is a rev: {}".format(chr(65 + self.rev))) # These will get updated during init() self.master_clock_rate = None # Predeclare some attributes to make linter happy: self.eeprom_fs = None self.eeprom_path = None # Now initialize all peripherals. If that doesn't work, put this class # into a non-functional state (but don't crash, or we can't talk to it # any more): try: self._init_periphs() self._periphs_initialized = True except Exception as ex: self.log.error("Failed to initialize peripherals: %s", str(ex)) self._periphs_initialized = False def _init_periphs(self): """ Initialize power and peripherals that don't need user-settings """ self.log.debug("Loading C++ drivers...") # Setup the ADF4002 adf4002_spi = lib.spi.make_spidev( str(self._spi_nodes['adf4002']), 1000000, # Speed (Hz) 0 # SPI mode ) self.log.trace("Initializing ADF4002.") from usrp_mpm.periph_manager.e320 import E320_DEFAULT_INT_CLOCK_FREQ self.adf4002 = ADF400x(adf4002_spi, freq=E320_DEFAULT_INT_CLOCK_FREQ, parent_log=self.log) # Set up AD9361 / the Neon Manager self._device = lib.dboards.neon_manager(self._spi_nodes['catalina']) ad936x_rfic = self._device.get_radio_ctrl() self.log.trace("Loaded C++ drivers.") self._init_cat_api(ad936x_rfic) self.eeprom_fs, self.eeprom_path = self._init_user_eeprom( self._get_user_eeprom_info(self.rev) ) def init(self, args): """ Initialize the RFIC portion of the E320 (rest happens in e320.init()) """ if not self._periphs_initialized: error_msg = "Cannot run init(), peripherals are not initialized!" self.log.error(error_msg) raise RuntimeError(error_msg) master_clock_rate = \ float(args.get('master_clock_rate', DEFAULT_MASTER_CLOCK_RATE)) self.init_rfic(master_clock_rate) return True ########################################################################### # Clocking ########################################################################### def update_ref_clock_freq(self, freq): """Update the reference clock frequency""" self.adf4002.set_ref_freq(freq) ########################################################################### # EEPROM Control ########################################################################### def _get_user_eeprom_info(self, rev): """ Return an EEPROM access map (from self.user_eeprom) based on the rev. """ rev_for_lookup = rev while rev_for_lookup not in self.user_eeprom: if rev_for_lookup < 0: raise RuntimeError( f"Could not find a user EEPROM map for revision {rev}!") rev_for_lookup -= 1 assert rev_for_lookup in self.user_eeprom, \ "Invalid EEPROM lookup rev!" return self.user_eeprom[rev_for_lookup] def _init_user_eeprom(self, eeprom_info): """ Reads out user-data EEPROM, and intializes a BufferFS object from that. """ self.log.trace("Initializing EEPROM user data...") eeprom_paths = get_eeprom_paths(eeprom_info.get('label')) self.log.trace("Found the following EEPROM paths: `{}'".format( eeprom_paths)) eeprom_path = eeprom_paths[self.slot_idx] self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path)) user_eeprom_offset = eeprom_info.get('offset', 0) self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset) user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:] self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data)) return BufferFS( user_eeprom_data, max_size=eeprom_info.get('max_size'), alignment=eeprom_info.get('alignment', 1024), log=self.log ), eeprom_path def get_user_eeprom_data(self): """ Return a dict of blobs stored in the user data section of the EEPROM. """ return { blob_id: self.eeprom_fs.get_blob(blob_id) for blob_id in self.eeprom_fs.entries.keys() } def set_user_eeprom_data(self, eeprom_data): """ Update the local EEPROM with the data from eeprom_data. The actual writing to EEPROM can take some time, and is thus kicked into a background task. Don't call set_user_eeprom_data() quickly in succession. Also, while the background task is running, reading the EEPROM is unavailable and MPM won't be able to reboot until it's completed. However, get_user_eeprom_data() will immediately return the correct data after this method returns. """ for blob_id, blob in eeprom_data.items(): self.eeprom_fs.set_blob(blob_id, blob) self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path)) eeprom_offset = self.user_eeprom[self.rev]['offset'] def _write_to_eeprom_task(path, offset, data, log): " Writer task: Actually write to file " # Note: This can be sped up by only writing sectors that actually # changed. To do so, this function would need to read out the # current state of the file, do some kind of diff, and then seek() # to the different sectors. When very large blobs are being # written, it doesn't actually help all that much, of course, # because in that case, we'd anyway be changing most of the EEPROM. with open(path, 'r+b') as eeprom_file: log.trace("Seeking forward to `{}'".format(offset)) eeprom_file.seek(eeprom_offset) log.trace("Writing a total of {} bytes.".format( len(self.eeprom_fs.buffer))) eeprom_file.write(data) log.trace("EEPROM write complete.") thread_id = "eeprom_writer_task_{}".format(self.slot_idx) if any([x.name == thread_id for x in threading.enumerate()]): # Should this be fatal? self.log.warn("Another EEPROM writer thread is already active!") writer_task = threading.Thread( target=_write_to_eeprom_task, args=( self.eeprom_path, eeprom_offset, self.eeprom_fs.buffer, self.log ), name=thread_id, ) writer_task.start() # Now return and let the copy finish on its own. The thread will detach # and MPM won't terminate this process until the thread is complete. # This does not stop anyone from killing this process (and the thread) # while the EEPROM write is happening, though.