# # Copyright 2017-2018 Ettus Research, a National Instruments Company # # SPDX-License-Identifier: GPL-3.0-or-later # """ Magnesium dboard implementation module """ from __future__ import print_function import os import threading from six import iterkeys, iteritems from usrp_mpm import lib # Pulls in everything from C++-land from usrp_mpm.dboard_manager import DboardManagerBase from usrp_mpm.dboard_manager.mg_periphs import TCA6408, MgCPLD from usrp_mpm.dboard_manager.mg_init import MagnesiumInitManager from usrp_mpm.mpmlog import get_logger from usrp_mpm.sys_utils.uio import open_uio from usrp_mpm.sys_utils.udev import get_eeprom_paths from usrp_mpm.bfrfs import BufferFS ############################################################################### # SPI Helpers ############################################################################### def create_spidev_iface_lmk(dev_node): """ Create a regs iface from a spidev node """ return lib.spi.make_spidev_regs_iface( str(dev_node), 1000000, # Speed (Hz) 3, # SPI mode 8, # Addr shift 0, # Data shift 1<<23, # Read flag 0, # Write flag ) def create_spidev_iface_cpld(dev_node): """ Create a regs iface from a spidev node """ return lib.spi.make_spidev_regs_iface( str(dev_node), 1000000, # Speed (Hz) 0, # SPI mode 16, # Addr shift 0, # Data shift 1<<23, # Read flag 0, # Write flag ) def create_spidev_iface_phasedac(dev_node): """ Create a regs iface from a spidev node (ADS5681) """ return lib.spi.make_spidev_regs_iface( str(dev_node), 1000000, # Speed (Hz) 1, # SPI mode 16, # Addr shift 0, # Data shift 0, # Read flag (phase DAC is write-only) 0, # Write flag ) ############################################################################### # Main dboard control class ############################################################################### class Magnesium(DboardManagerBase): """ Holds all dboard specific information and methods of the magnesium dboard """ ######################################################################### # Overridables # # See DboardManagerBase for documentation on these fields ######################################################################### pids = [0x150] rx_sensor_callback_map = { 'lowband_lo_locked': 'get_lowband_tx_lo_locked_sensor', 'ad9371_lo_locked': 'get_ad9371_tx_lo_locked_sensor', } tx_sensor_callback_map = { 'lowband_lo_locked': 'get_lowband_rx_lo_locked_sensor', 'ad9371_lo_locked': 'get_ad9371_rx_lo_locked_sensor', } # Maps the chipselects to the corresponding devices: spi_chipselect = {"cpld": 0, "lmk": 1, "mykonos": 2, "phase_dac": 3} ### End of overridables ################################################# # Class-specific, but constant settings: spi_factories = { "cpld": create_spidev_iface_cpld, "lmk": create_spidev_iface_lmk, "phase_dac": create_spidev_iface_phasedac, } #file system path to i2c-adapter/mux base_i2c_adapter = '/sys/class/i2c-adapter' # Map I2C channel to slot index i2c_chan_map = {0: 'i2c-9', 1: 'i2c-10'} # This map describes how the user data is stored in EEPROM. If a dboard rev # changes the way the EEPROM is used, we add a new entry. If a dboard rev # is not found in the map, then we go backward until we find a suitable rev user_eeprom = { 2: { # RevC 'label': "e0004000.i2c", 'offset': 1024, 'max_size': 32786 - 1024, 'alignment': 1024, }, } default_master_clock_rate = 125e6 default_time_source = 'internal' default_current_jesd_rate = 2500e6 def __init__(self, slot_idx, **kwargs): super(Magnesium, self).__init__(slot_idx, **kwargs) self.log = get_logger("Magnesium-{}".format(slot_idx)) self.log.trace("Initializing Magnesium daughterboard, slot index %d", self.slot_idx) self.rev = int(self.device_info['rev']) self.log.trace("This is a rev: {}".format(chr(65 + self.rev))) # This is a default ref clock freq, it must be updated before init() is # called! self.ref_clock_freq = None # These will get updated during init() self.master_clock_rate = None self.current_jesd_rate = None # Predeclare some attributes to make linter happy: self.lmk = None self._port_expander = None self.mykonos = None self.eeprom_fs = None self.eeprom_path = None self.cpld = None self._init_args = {} # Now initialize all peripherals. If that doesn't work, put this class # into a non-functional state (but don't crash, or we can't talk to it # any more): try: self._init_periphs() self._periphs_initialized = True except Exception as ex: self.log.error("Failed to initialize peripherals: %s", str(ex)) self._periphs_initialized = False def _init_periphs(self): """ Initialize power and peripherals that don't need user-settings """ self._port_expander = TCA6408(self._get_i2c_dev(self.slot_idx)) self._power_on() self.log.debug("Loading C++ drivers...") # The Mykonos TX DeFramer lane crossbar requires configuration on a per-slot # basis due to motherboard MGT lane swapping. # The RX framer lane crossbar configuration # is identical for both slots and is hard-coded within the Mykonos API. deserializer_lane_xbar = 0xD2 if self.slot_idx == 0 else 0x72 self._device = lib.dboards.magnesium_manager( self._spi_nodes['mykonos'], deserializer_lane_xbar ) self.mykonos = self._device.get_radio_ctrl() self.spi_lock = self._device.get_spi_lock() self.log.trace("Loaded C++ drivers.") self._init_myk_api(self.mykonos) self.log.debug( "AD9371: ARM version: {arm_ver} API version: {api_ver} " "Device revision: {dev_rev}".format( arm_ver=self.get_arm_version(), api_ver=self.get_api_version(), dev_rev=self.get_device_rev(), ) ) self.eeprom_fs, self.eeprom_path = self._init_user_eeprom( self._get_user_eeprom_info(self.rev) ) self.log.trace("Loading SPI devices...") self._spi_ifaces = { key: self.spi_factories[key](self._spi_nodes[key]) for key in self.spi_factories } self.cpld = MgCPLD(self._spi_ifaces['cpld'], self.log) self.device_info['cpld_rev'] = \ str(self.cpld.major_rev) + '.' + str(self.cpld.minor_rev) def _power_on(self): " Turn on power to daughterboard " self.log.trace("Powering on slot_idx={}...".format(self.slot_idx)) self._port_expander.set("PWR-EN-3.6V") self._port_expander.set("PWR-EN-1.5V") self._port_expander.set("PWR-EN-5.5V") self._port_expander.set("LED") def _power_off(self): " Turn off power to daughterboard " self.log.trace("Powering off slot_idx={}...".format(self.slot_idx)) self._port_expander.reset("PWR-EN-3.6V") self._port_expander.reset("PWR-EN-1.5V") self._port_expander.reset("PWR-EN-5.5V") self._port_expander.reset("LED") def _get_i2c_dev(self, slot_idx): " Return the I2C path for this daughterboard " import pyudev context = pyudev.Context() i2c_dev_path = os.path.join( self.base_i2c_adapter, self.i2c_chan_map[slot_idx] ) return pyudev.Devices.from_sys_path(context, i2c_dev_path) def _init_myk_api(self, myk): """ Propagate the C++ Mykonos API into Python land. """ def export_method(obj, method): " Export a method object, including docstring " meth_obj = getattr(obj, method) def func(*args): " Functor for storing docstring too " return meth_obj(*args) func.__doc__ = meth_obj.__doc__ return func self.log.trace("Forwarding AD9371 methods to Magnesium class...") for method in [ x for x in dir(self.mykonos) if not x.startswith("_") and \ callable(getattr(self.mykonos, x))]: self.log.trace("adding {}".format(method)) setattr(self, method, export_method(myk, method)) def _get_user_eeprom_info(self, rev): """ Return an EEPROM access map (from self.user_eeprom) based on the rev. """ rev_for_lookup = rev while rev_for_lookup not in self.user_eeprom: if rev_for_lookup < 0: raise RuntimeError("Could not find a user EEPROM map for " "revision %d!", rev) rev_for_lookup -= 1 assert rev_for_lookup in self.user_eeprom, \ "Invalid EEPROM lookup rev!" return self.user_eeprom[rev_for_lookup] def _init_user_eeprom(self, eeprom_info): """ Reads out user-data EEPROM, and intializes a BufferFS object from that. """ self.log.trace("Initializing EEPROM user data...") eeprom_paths = get_eeprom_paths(eeprom_info.get('label')) self.log.trace("Found the following EEPROM paths: `{}'".format( eeprom_paths)) eeprom_path = eeprom_paths[self.slot_idx] self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path)) user_eeprom_offset = eeprom_info.get('offset', 0) self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset) user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:] self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data)) # FIXME verify EEPROM sectors return BufferFS( user_eeprom_data, max_size=eeprom_info.get('max_size'), alignment=eeprom_info.get('alignment', 1024), log=self.log ), eeprom_path def init(self, args): """ Execute necessary init dance to bring up dboard """ # Sanity checks and input validation: self.log.debug("init() called with args `{}'".format( ",".join(['{}={}'.format(x, args[x]) for x in args]) )) if not self._periphs_initialized: error_msg = "Cannot run init(), peripherals are not initialized!" self.log.error(error_msg) raise RuntimeError(error_msg) # Check if ref clock freq changed (would require a full init) ref_clk_freq_changed = False if 'ref_clk_freq' in args: new_ref_clock_freq = float(args['ref_clk_freq']) assert new_ref_clock_freq in (10e6, 20e6, 25e6) if new_ref_clock_freq != self.ref_clock_freq: self.ref_clock_freq = float(args['ref_clk_freq']) ref_clk_freq_changed = True assert self.ref_clock_freq is not None # Check if master clock freq changed (would require a full init) master_clock_rate = \ float(args.get('master_clock_rate', self.default_master_clock_rate)) assert master_clock_rate in (122.88e6, 125e6, 153.6e6), \ "Invalid master clock rate: {:.02f} MHz".format( master_clock_rate / 1e6) master_clock_rate_changed = \ master_clock_rate != self.master_clock_rate if master_clock_rate_changed: self.master_clock_rate = master_clock_rate self.log.debug( "Updating master clock rate to {:.02f} MHz!" .format(self.master_clock_rate / 1e6) ) # Track if we're able to do a "fast reinit", which means there were no # major changes and can skip all slow initialization steps. fast_reinit = \ not bool(args.get("force_reinit", False)) \ and not master_clock_rate_changed \ and not ref_clk_freq_changed if fast_reinit: self.log.debug( "Attempting fast re-init with the following settings: " "master_clock_rate={} MHz ref_clk_freq={}" .format( self.master_clock_rate / 1e6, self.ref_clock_freq, ) ) # Note: MagnesiumInitManager.init() can still override fast_reinit. # Consider it a hint. result = MagnesiumInitManager(self, self._spi_ifaces).init( args, self._init_args, fast_reinit) if result: self._init_args = args return result def get_user_eeprom_data(self): """ Return a dict of blobs stored in the user data section of the EEPROM. """ return { blob_id: self.eeprom_fs.get_blob(blob_id) for blob_id in iterkeys(self.eeprom_fs.entries) } def set_user_eeprom_data(self, eeprom_data): """ Update the local EEPROM with the data from eeprom_data. The actual writing to EEPROM can take some time, and is thus kicked into a background task. Don't call set_user_eeprom_data() quickly in succession. Also, while the background task is running, reading the EEPROM is unavailable and MPM won't be able to reboot until it's completed. However, get_user_eeprom_data() will immediately return the correct data after this method returns. """ for blob_id, blob in iteritems(eeprom_data): self.eeprom_fs.set_blob(blob_id, blob) self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path)) eeprom_offset = self.user_eeprom[self.rev]['offset'] def _write_to_eeprom_task(path, offset, data, log): " Writer task: Actually write to file " # Note: This can be sped up by only writing sectors that actually # changed. To do so, this function would need to read out the # current state of the file, do some kind of diff, and then seek() # to the different sectors. When very large blobs are being # written, it doesn't actually help all that much, of course, # because in that case, we'd anyway be changing most of the EEPROM. with open(path, 'r+b') as eeprom_file: log.trace("Seeking forward to `{}'".format(offset)) eeprom_file.seek(eeprom_offset) log.trace("Writing a total of {} bytes.".format( len(self.eeprom_fs.buffer))) eeprom_file.write(data) log.trace("EEPROM write complete.") thread_id = "eeprom_writer_task_{}".format(self.slot_idx) if any([x.name == thread_id for x in threading.enumerate()]): # Should this be fatal? self.log.warn("Another EEPROM writer thread is already active!") writer_task = threading.Thread( target=_write_to_eeprom_task, args=( self.eeprom_path, eeprom_offset, self.eeprom_fs.buffer, self.log ), name=thread_id, ) writer_task.start() # Now return and let the copy finish on its own. The thread will detach # and MPM won't terminate this process until the thread is complete. # This does not stop anyone from killing this process (and the thread) # while the EEPROM write is happening, though. def get_master_clock_rate(self): " Return master clock rate (== sampling rate) " return self.master_clock_rate def update_ref_clock_freq(self, freq): """ Call this function if the frequency of the reference clock changes (the 10, 20, 25 MHz one). Note: Won't actually re-run any settings. """ assert freq in (10e6, 20e6, 25e6), \ "Invalid ref clock frequency: {}".format(freq) self.log.trace("Changing ref clock frequency to %f MHz", freq/1e6) self.ref_clock_freq = freq ########################################################################## # Sensors ########################################################################## def get_ref_lock(self): """ Returns True if the LMK reference is locked. Note: This does not return a sensor dict. The sensor API call is in the motherboard class. """ if self.lmk is None: self.log.trace("LMK object not yet initialized, defaulting to " \ "no ref locked!") return False lmk_lock_status = self.lmk.check_plls_locked() self.log.trace("LMK lock status is: {}".format(lmk_lock_status)) return lmk_lock_status def get_lowband_lo_lock(self, which): """ Return LO lock status (Boolean!) of the lowband LOs. 'which' must be either 'tx' or 'rx' """ assert which.lower() in ('tx', 'rx') return self.cpld.get_lo_lock_status(which.upper()) def get_ad9371_lo_lock(self, which): """ Return LO lock status (Boolean!) of the lowband LOs. 'which' must be either 'tx' or 'rx' """ return self.mykonos.get_lo_locked(which.upper()) def get_lowband_tx_lo_locked_sensor(self, chan): " TX lowband LO lock sensor " self.log.trace("Querying TX lowband LO lock status for chan %d...", chan) lock_status = self.get_lowband_lo_lock('tx') return { 'name': 'lowband_lo_locked', 'type': 'BOOLEAN', 'unit': 'locked' if lock_status else 'unlocked', 'value': str(lock_status).lower(), } def get_lowband_rx_lo_locked_sensor(self, chan): " RX lowband LO lock sensor " self.log.trace("Querying RX lowband LO lock status for chan %d...", chan) lock_status = self.get_lowband_lo_lock('rx') return { 'name': 'lowband_lo_locked', 'type': 'BOOLEAN', 'unit': 'locked' if lock_status else 'unlocked', 'value': str(lock_status).lower(), } def get_ad9371_tx_lo_locked_sensor(self, chan): " TX ad9371 LO lock sensor " self.log.trace("Querying TX AD9371 LO lock status for chan %d...", chan) lock_status = self.get_ad9371_lo_lock('tx') return { 'name': 'ad9371_lo_locked', 'type': 'BOOLEAN', 'unit': 'locked' if lock_status else 'unlocked', 'value': str(lock_status).lower(), } def get_ad9371_rx_lo_locked_sensor(self, chan): " RX ad9371 LO lock sensor " self.log.trace("Querying RX AD9371 LO lock status for chan %d...", chan) lock_status = self.get_ad9371_lo_lock('tx') return { 'name': 'ad9371_lo_locked', 'type': 'BOOLEAN', 'unit': 'locked' if lock_status else 'unlocked', 'value': str(lock_status).lower(), } ########################################################################## # Debug ########################################################################## def cpld_peek(self, addr): """ Debug for accessing the CPLD via the RPC shell. """ return self.cpld.peek16(addr) def cpld_poke(self, addr, data): """ Debug for accessing the CPLD via the RPC shell. """ self.cpld.poke16(addr, data) return self.cpld.peek16(addr) def dump_jesd_core(self): " Debug method to dump all JESD core regs " with open_uio( label="dboard-regs-{}".format(self.slot_idx), read_only=False ) as dboard_ctrl_regs: for i in range(0x2000, 0x2110, 0x10): print(("0x%04X " % i), end=' ') for j in range(0, 0x10, 0x4): print(("%08X" % dboard_ctrl_regs.peek32(i + j)), end=' ') print("") def dbcore_peek(self, addr): """ Debug for accessing the DB Core registers via the RPC shell. """ with open_uio( label="dboard-regs-{}".format(self.slot_idx), read_only=False ) as dboard_ctrl_regs: rd_data = dboard_ctrl_regs.peek32(addr) self.log.trace("DB Core Register 0x{:04X} response: 0x{:08X}".format(addr, rd_data)) return rd_data def dbcore_poke(self, addr, data): """ Debug for accessing the DB Core registers via the RPC shell. """ with open_uio( label="dboard-regs-{}".format(self.slot_idx), read_only=False ) as dboard_ctrl_regs: self.log.trace("Writing DB Core Register 0x{:04X} with 0x{:08X}...".format(addr, data)) dboard_ctrl_regs.poke32(addr, data)