//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "usrp_cal_utils.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
/***********************************************************************
* Transmit thread
**********************************************************************/
static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_ampl){
uhd::set_thread_priority_safe();
//create a transmit streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
//setup variables and allocate buffer
uhd::tx_metadata_t md;
md.has_time_spec = false;
std::vector > buff(tx_stream->get_max_num_samps()*10);
//fill buff and send until interrupted
while (not boost::this_thread::interruption_requested()){
for (size_t i = 0; i < buff.size(); i++){
buff[i] = float(tx_wave_ampl);
}
tx_stream->send(&buff.front(), buff.size(), md);
}
//send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
}
/***********************************************************************
* Tune RX and TX routine
**********************************************************************/
static double tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double rx_lo_freq, const double tx_offset){
//tune the receiver with no cordic
uhd::tune_request_t rx_tune_req(rx_lo_freq);
rx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
rx_tune_req.dsp_freq = 0;
usrp->set_rx_freq(rx_tune_req);
//tune the transmitter with no cordic
uhd::tune_request_t tx_tune_req(usrp->get_rx_freq() - tx_offset);
tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
tx_tune_req.dsp_freq = 0;
usrp->set_tx_freq(tx_tune_req);
//wait for the LOs to become locked
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
boost::system_time start = boost::get_system_time();
while (not usrp->get_tx_sensor("lo_locked").to_bool() or not usrp->get_rx_sensor("lo_locked").to_bool()){
if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){
throw std::runtime_error("timed out waiting for TX and/or RX LO to lock");
}
}
return usrp->get_rx_freq();
}
/***********************************************************************
* Data capture routine
**********************************************************************/
static void capture_samples(uhd::usrp::multi_usrp::sptr usrp, uhd::rx_streamer::sptr rx_stream, std::vector > &buff){
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = buff.size();
stream_cmd.stream_now = true;
usrp->issue_stream_cmd(stream_cmd);
uhd::rx_metadata_t md;
const size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);
//validate the received data
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
throw std::runtime_error(str(boost::format(
"Unexpected error code 0x%x"
) % md.error_code));
}
if (num_rx_samps != buff.size()){
throw std::runtime_error("did not get all the samples requested");
}
}
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
std::string args;
double rate, tx_wave_ampl, tx_offset, freq_step, tx_gain, rx_gain;
size_t nsamps;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("verbose", "enable some verbose")
("args", po::value(&args)->default_value(""), "device address args [default = \"\"]")
("rate", po::value(&rate)->default_value(12.5e6), "RX and TX sample rate in Hz")
("tx_wave_ampl", po::value(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts")
("tx_offset", po::value(&tx_offset)->default_value(.9344e6), "TX LO offset from the RX LO in Hz")
("tx_gain", po::value(&tx_gain)->default_value(0), "TX gain in dB")
("rx_gain", po::value(&rx_gain)->default_value(0), "RX gain in dB")
("freq_step", po::value(&freq_step)->default_value(10e6), "Step size for LO sweep in Hz")
("nsamps", po::value(&nsamps)->default_value(10000), "Samples per data capture")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("USRP Generate RX Frontend Calibration Table %s") % desc << std::endl;
std::cout <<
"This application measures leakage between RX and TX on an XCVR daughterboard to self-calibrate.\n"
<< std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//set the antennas to cal
if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL")){
throw std::runtime_error("This board does not have the CAL antenna option, cannot self-calibrate.");
}
usrp->set_rx_antenna("CAL");
usrp->set_tx_antenna("CAL");
//set the sample rates
usrp->set_rx_rate(rate);
usrp->set_tx_rate(rate);
//set midrange rx gain, default 0 tx gain
usrp->set_tx_gain(tx_gain);
usrp->set_rx_gain(rx_gain);
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//create a transmitter thread
boost::thread_group threads;
threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_ampl));
//re-usable buffer for samples
std::vector > buff(nsamps);
//store the results here
std::vector results;
const uhd::meta_range_t freq_range = usrp->get_rx_freq_range();
for (double rx_lo_i = freq_range.start()+50e6; rx_lo_i < freq_range.stop()-50e6; rx_lo_i += freq_step){
const double rx_lo = tune_rx_and_tx(usrp, rx_lo_i, tx_offset);
//bounds and results from searching
std::complex best_correction;
double phase_corr_start = -.3, phase_corr_stop = .3, phase_corr_step;
double ampl_corr_start = -.3, ampl_corr_stop = .3, ampl_corr_step;
double best_suppression = 0, best_phase_corr = 0, best_ampl_corr = 0;
for (size_t i = 0; i < num_search_iters; i++){
phase_corr_step = (phase_corr_stop - phase_corr_start)/(num_search_steps-1);
ampl_corr_step = (ampl_corr_stop - ampl_corr_start)/(num_search_steps-1);
for (double phase_corr = phase_corr_start; phase_corr <= phase_corr_stop + phase_corr_step/2; phase_corr += phase_corr_step){
for (double ampl_corr = ampl_corr_start; ampl_corr <= ampl_corr_stop + ampl_corr_step/2; ampl_corr += ampl_corr_step){
const std::complex correction = std::polar(ampl_corr+1, phase_corr*tau);
usrp->set_rx_iq_balance(correction);
//receive some samples
capture_samples(usrp, rx_stream, buff);
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_tone_freq = actual_tx_freq - actual_rx_freq;
const double bb_imag_freq = -bb_tone_freq;
const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate);
const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate);
const double suppression = tone_dbrms - imag_dbrms;
//std::cout << "bb_tone_freq " << bb_tone_freq << std::endl;
//std::cout << "bb_imag_freq " << bb_imag_freq << std::endl;
//std::cout << "tone_dbrms " << tone_dbrms << std::endl;
//std::cout << "imag_dbrms " << imag_dbrms << std::endl;
//std::cout << "suppression " << (tone_dbrms - imag_dbrms) << std::endl;
if (suppression > best_suppression){
best_correction = correction;
best_suppression = suppression;
best_phase_corr = phase_corr;
best_ampl_corr = ampl_corr;
}
}}
//std::cout << "best_phase_corr " << best_phase_corr << std::endl;
//std::cout << "best_ampl_corr " << best_ampl_corr << std::endl;
//std::cout << "best_suppression " << best_suppression << std::endl;
phase_corr_start = best_phase_corr - phase_corr_step;
phase_corr_stop = best_phase_corr + phase_corr_step;
ampl_corr_start = best_ampl_corr - ampl_corr_step;
ampl_corr_stop = best_ampl_corr + ampl_corr_step;
}
if (best_suppression > 30){ //most likely valid, keep result
result_t result;
result.freq = rx_lo;
result.real_corr = best_correction.real();
result.imag_corr = best_correction.imag();
result.sup = best_suppression;
results.push_back(result);
}
if (vm.count("verbose")){
std::cout << boost::format("%f MHz: best suppression %fdB") % (rx_lo/1e6) % best_suppression << std::endl;
}
else std::cout << "." << std::flush;
}
std::cout << std::endl;
//stop the transmitter
threads.interrupt_all();
threads.join_all();
store_results(usrp, results, "RX", "rx");
return 0;
}