// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace po = boost::program_options; namespace fs = boost::filesystem; /*********************************************************************** * Constants **********************************************************************/ static const double tau = 6.28318531; static const double alpha = 0.0001; //very tight iir filter static const size_t wave_table_len = 8192; static const size_t num_search_steps = 5; static const size_t num_search_iters = 7; /*********************************************************************** * Sinusoid wave table **********************************************************************/ static std::vector > gen_table(void){ std::vector > wave_table(wave_table_len); for (size_t i = 0; i < wave_table_len; i++){ wave_table[i] = std::polar(1.0, (tau*i)/wave_table_len); } return wave_table; } static std::complex wave_table_lookup(const size_t index){ static const std::vector > wave_table = gen_table(); return wave_table[index % wave_table_len]; } /*********************************************************************** * Compute power of a tone **********************************************************************/ static double compute_tone_dbrms( const std::vector > &samples, const double freq //freq is fractional ){ //shift the samples so the tone at freq is down at DC std::vector > shifted(samples.size()); for (size_t i = 0; i < shifted.size(); i++){ shifted[i] = std::complex(samples[i]) * std::polar(1.0, -freq*tau*i); } //filter the samples with a narrow low pass std::complex iir_output = 0, iir_last = 0; double output = 0; for (size_t i = 0; i < shifted.size(); i++){ iir_output = alpha * shifted[i] + (1-alpha)*iir_last; iir_last = iir_output; output += std::abs(iir_output); } return 20*std::log10(output/shifted.size()); } /*********************************************************************** * Transmit thread **********************************************************************/ static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_freq, const double tx_wave_ampl){ uhd::set_thread_priority_safe(); //create a transmit streamer uhd::stream_args_t stream_args("fc32"); //complex floats uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); //setup variables and allocate buffer uhd::tx_metadata_t md; md.has_time_spec = false; std::vector > buff(tx_stream->get_max_num_samps()*10); //values for the wave table lookup size_t index = 0; const double tx_rate = usrp->get_tx_rate(); const size_t step = boost::math::iround(wave_table_len * tx_wave_freq/tx_rate); //fill buff and send until interrupted while (not boost::this_thread::interruption_requested()){ for (size_t i = 0; i < buff.size(); i++){ buff[i] = float(tx_wave_ampl) * wave_table_lookup(index += step); } tx_stream->send(&buff.front(), buff.size(), md); } //send a mini EOB packet md.end_of_burst = true; tx_stream->send("", 0, md); } /*********************************************************************** * Tune RX and TX routine **********************************************************************/ static double tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double tx_lo_freq, const double rx_offset){ //tune the transmitter with no cordic uhd::tune_request_t tx_tune_req(tx_lo_freq); tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL; tx_tune_req.dsp_freq = 0; usrp->set_tx_freq(tx_tune_req); //tune the receiver usrp->set_rx_freq(usrp->get_tx_freq() - rx_offset); //wait for the LOs to become locked boost::system_time start = boost::get_system_time(); while (not usrp->get_tx_sensor("lo_locked").to_bool() or not usrp->get_rx_sensor("lo_locked").to_bool()){ if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){ throw std::runtime_error("timed out waiting for TX and/or RX LO to lock"); } } return usrp->get_tx_freq(); } /*********************************************************************** * Data capture routine **********************************************************************/ static void capture_samples(uhd::usrp::multi_usrp::sptr usrp, uhd::rx_streamer::sptr rx_stream, std::vector > &buff){ uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = buff.size(); stream_cmd.stream_now = true; usrp->issue_stream_cmd(stream_cmd); uhd::rx_metadata_t md; const size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md); //validate the received data if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){ throw std::runtime_error(str(boost::format( "Unexpected error code 0x%x" ) % md.error_code)); } if (num_rx_samps != buff.size()){ throw std::runtime_error("did not get all the samples requested"); } } /*********************************************************************** * Store data to file **********************************************************************/ struct result_t{double freq, real_corr, imag_corr, sup;}; static void store_results(uhd::usrp::multi_usrp::sptr usrp, const std::vector &results){ //extract eeprom serial uhd::property_tree::sptr tree = usrp->get_device()->get_tree(); const uhd::fs_path db_path = "/mboards/0/dboards/A/tx_eeprom"; const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access(db_path).get(); if (db_eeprom.serial.empty()) throw std::runtime_error("TX dboard has empty serial!"); //make the calibration file path fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd"; fs::create_directory(cal_data_path); cal_data_path = cal_data_path / "cal"; fs::create_directory(cal_data_path); cal_data_path = cal_data_path / ("tx_fe_cal_v0.1_" + db_eeprom.serial + ".csv"); if (fs::exists(cal_data_path)){ fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL))); } //fill the calibration file std::ofstream cal_data(cal_data_path.string().c_str()); cal_data << boost::format("name, TX Frontend Calibration\n"); cal_data << boost::format("serial, %s\n") % db_eeprom.serial; cal_data << boost::format("timestamp, %d\n") % time(NULL); cal_data << boost::format("version, 0, 1\n"); cal_data << boost::format("DATA STARTS HERE\n"); cal_data << "tx_lo_frequency, tx_iq_correction_real, tx_iq_correction_imag, measured_suppression\n"; for (size_t i = 0; i < results.size(); i++){ cal_data << results[i].freq << ", " << results[i].real_corr << ", " << results[i].imag_corr << ", " << results[i].sup << "\n" ; } std::cout << "wrote cal data to " << cal_data_path << std::endl; } /*********************************************************************** * Main **********************************************************************/ int UHD_SAFE_MAIN(int argc, char *argv[]){ std::string args; double rate, tx_wave_freq, tx_wave_ampl, rx_offset, freq_step, tx_gain, rx_gain; size_t nsamps; po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("verbose", "enable some verbose") ("args", po::value(&args)->default_value(""), "device address args [default = \"\"]") ("rate", po::value(&rate)->default_value(12.5e6), "RX and TX sample rate in Hz") ("tx_wave_freq", po::value(&tx_wave_freq)->default_value(507.123e3), "Transmit wave frequency in Hz") ("tx_wave_ampl", po::value(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts") ("rx_offset", po::value(&rx_offset)->default_value(.9344e6), "RX LO offset from the TX LO in Hz") ("tx_gain", po::value(&tx_gain)->default_value(0), "TX gain in dB") ("rx_gain", po::value(&rx_gain)->default_value(0), "RX gain in dB") ("freq_step", po::value(&freq_step)->default_value(10e6), "Step size for LO sweep in Hz") ("nsamps", po::value(&nsamps)->default_value(10000), "Samples per data capture") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("USRP Generate Daughterboard Calibration Table %s") % desc << std::endl; std::cout << "This application measures leakage between RX and TX on an XCVR daughterboard to self-calibrate.\n" << std::endl; return ~0; } //create a usrp device std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); //set the antennas to cal if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL")){ throw std::runtime_error("This board does not have the CAL antenna option, cannot self-calibrate."); } usrp->set_rx_antenna("CAL"); usrp->set_tx_antenna("CAL"); //set the sample rates usrp->set_rx_rate(rate); usrp->set_tx_rate(rate); //set midrange rx gain, default 0 tx gain usrp->set_tx_gain(tx_gain); usrp->set_rx_gain(rx_gain); //create a receive streamer uhd::stream_args_t stream_args("fc32"); //complex floats uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); //create a transmitter thread boost::thread_group threads; threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_freq, tx_wave_ampl)); //re-usable buffer for samples std::vector > buff(nsamps); //store the results here std::vector results; const uhd::meta_range_t freq_range = usrp->get_tx_freq_range(); for (double tx_lo_i = freq_range.start()+50e6; tx_lo_i < freq_range.stop()-50e6; tx_lo_i += freq_step){ const double tx_lo = tune_rx_and_tx(usrp, tx_lo_i, rx_offset); //bounds and results from searching std::complex best_correction; double phase_corr_start = -.3, phase_corr_stop = .3, phase_corr_step; double ampl_corr_start = -.3, ampl_corr_stop = .3, ampl_corr_step; double best_suppression = 0, best_phase_corr = 0, best_ampl_corr = 0; for (size_t i = 0; i < num_search_iters; i++){ phase_corr_step = (phase_corr_stop - phase_corr_start)/(num_search_steps-1); ampl_corr_step = (ampl_corr_stop - ampl_corr_start)/(num_search_steps-1); for (double phase_corr = phase_corr_start; phase_corr <= phase_corr_stop + phase_corr_step/2; phase_corr += phase_corr_step){ for (double ampl_corr = ampl_corr_start; ampl_corr <= ampl_corr_stop + ampl_corr_step/2; ampl_corr += ampl_corr_step){ const std::complex correction = std::polar(ampl_corr+1, phase_corr*tau); usrp->set_tx_iq_balance(correction); //receive some samples capture_samples(usrp, rx_stream, buff); const double actual_rx_rate = usrp->get_rx_rate(); const double actual_tx_freq = usrp->get_tx_freq(); const double actual_rx_freq = usrp->get_rx_freq(); const double bb_tone_freq = actual_tx_freq + tx_wave_freq - actual_rx_freq; const double bb_imag_freq = actual_tx_freq - tx_wave_freq - actual_rx_freq; const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate); const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate); const double suppression = tone_dbrms - imag_dbrms; //std::cout << "bb_tone_freq " << bb_tone_freq << std::endl; //std::cout << "bb_imag_freq " << bb_imag_freq << std::endl; //std::cout << "tone_dbrms " << tone_dbrms << std::endl; //std::cout << "imag_dbrms " << imag_dbrms << std::endl; //std::cout << "suppression " << (tone_dbrms - imag_dbrms) << std::endl; if (suppression > best_suppression){ best_correction = correction; best_suppression = suppression; best_phase_corr = phase_corr; best_ampl_corr = ampl_corr; } }} //std::cout << "best_phase_corr " << best_phase_corr << std::endl; //std::cout << "best_ampl_corr " << best_ampl_corr << std::endl; //std::cout << "best_suppression " << best_suppression << std::endl; phase_corr_start = best_phase_corr - phase_corr_step; phase_corr_stop = best_phase_corr + phase_corr_step; ampl_corr_start = best_ampl_corr - ampl_corr_step; ampl_corr_stop = best_ampl_corr + ampl_corr_step; } if (best_suppression > 30){ //most likely valid, keep result result_t result; result.freq = tx_lo; result.real_corr = best_correction.real(); result.imag_corr = best_correction.imag(); result.sup = best_suppression; results.push_back(result); } if (vm.count("verbose")){ std::cout << boost::format("%f MHz: best suppression %fdB") % (tx_lo/1e6) % best_suppression << std::endl; } else std::cout << "." << std::flush; } std::cout << std::endl; //stop the transmitter threads.interrupt_all(); threads.join_all(); store_results(usrp, results); return 0; }