//
// Copyright 2011-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace fs = boost::filesystem;
struct result_t{double freq, real_corr, imag_corr, best, delta;};
typedef std::complex samp_type;
/***********************************************************************
* Constants
**********************************************************************/
static const double tau = 6.28318531;
static const size_t wave_table_len = 65536;
static const size_t num_search_steps = 5;
static const double default_precision = 0.0001;
static const double default_freq_step = 7.3e6;
static const size_t default_fft_bin_size = 1000;
/***********************************************************************
* Set standard defaults for devices
**********************************************************************/
static inline void set_optimum_defaults(uhd::usrp::multi_usrp::sptr usrp)
{
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
// Will work on 1st subdev, top-level must make sure it's the right one
uhd::usrp::subdev_spec_t subdev_spec = usrp->get_rx_subdev_spec();
const uhd::fs_path mb_path = "/mboards/0";
const std::string mb_name = tree->access(mb_path / "name").get();
if (mb_name.find("USRP2") != std::string::npos or
mb_name.find("N200") != std::string::npos or
mb_name.find("N210") != std::string::npos or
mb_name.find("X300") != std::string::npos or
mb_name.find("X310") != std::string::npos)
{
usrp->set_tx_rate(12.5e6);
usrp->set_rx_rate(12.5e6);
}
else if (mb_name.find("B100") != std::string::npos)
{
usrp->set_tx_rate(4e6);
usrp->set_rx_rate(4e6);
}
else if (mb_name.find("E100") != std::string::npos or mb_name.find("E110") != std::string::npos)
{
usrp->set_tx_rate(4e6);
usrp->set_rx_rate(8e6);
}
else
{
throw std::runtime_error("self-calibration is not supported for this device");
}
const uhd::fs_path tx_fe_path = "/mboards/0/dboards/" + subdev_spec[0].db_name + "/tx_frontends/0";
const std::string tx_name = tree->access(tx_fe_path / "name").get();
if (tx_name.find("WBX") == std::string::npos and
tx_name.find("SBX") == std::string::npos and
tx_name.find("CBX") == std::string::npos and
tx_name.find("RFX") == std::string::npos and
tx_name.find("UBX") == std::string::npos
)
{
throw std::runtime_error("self-calibration is not supported for this TX dboard");
}
usrp->set_tx_gain(0);
const uhd::fs_path rx_fe_path = "/mboards/0/dboards/" + subdev_spec[0].db_name + "/rx_frontends/0";
const std::string rx_name = tree->access(rx_fe_path / "name").get();
if (rx_name.find("WBX") == std::string::npos and
rx_name.find("SBX") == std::string::npos and
rx_name.find("CBX") == std::string::npos and
rx_name.find("RFX") == std::string::npos and
rx_name.find("UBX") == std::string::npos
)
{
throw std::runtime_error("self-calibration is not supported for this RX dboard");
}
usrp->set_rx_gain(0);
}
/***********************************************************************
* Check for empty serial
**********************************************************************/
void check_for_empty_serial(uhd::usrp::multi_usrp::sptr usrp)
{
// Will work on 1st subdev, top-level must make sure it's the right one
uhd::usrp::subdev_spec_t subdev_spec = usrp->get_rx_subdev_spec();
//extract eeprom
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
// This only works with transceiver boards, so we can always check rx side
const uhd::fs_path db_path = "/mboards/0/dboards/" + subdev_spec[0].db_name + "/rx_eeprom";
const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access(db_path).get();
std::string error_string = "This dboard has no serial!\n\nPlease see the Calibration documentation for details on how to fix this.";
if (db_eeprom.serial.empty())
throw std::runtime_error(error_string);
}
/***********************************************************************
* Sinusoid wave table
**********************************************************************/
class wave_table
{
public:
wave_table(const double ampl)
{
_table.resize(wave_table_len);
for (size_t i = 0; i < wave_table_len; i++)
_table[i] = samp_type(std::polar(ampl, (tau*i)/wave_table_len));
}
inline samp_type operator()(const size_t index) const
{
return _table[index % wave_table_len];
}
private:
std::vector _table;
};
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static inline double compute_tone_dbrms(
const std::vector &samples,
const double freq) //freq is fractional
{
//shift the samples so the tone at freq is down at DC
//and average the samples to measure the DC component
samp_type average = 0;
for (size_t i = 0; i < samples.size(); i++)
average += samp_type(std::polar(1.0, -freq*tau*i)) * samples[i];
return 20*std::log10(std::abs(average/float(samples.size())));
}
/***********************************************************************
* Write a dat file
**********************************************************************/
static inline void write_samples_to_file(
const std::vector &samples, const std::string &file)
{
std::ofstream outfile(file.c_str(), std::ofstream::binary);
outfile.write((const char*)&samples.front(), samples.size()*sizeof(samp_type));
outfile.close();
}
/***********************************************************************
* Retrieve d'board serial
**********************************************************************/
static std::string get_serial(
uhd::usrp::multi_usrp::sptr usrp,
const std::string &tx_rx)
{
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
// Will work on 1st subdev, top-level must make sure it's the right one
uhd::usrp::subdev_spec_t subdev_spec = usrp->get_rx_subdev_spec();
const uhd::fs_path db_path = "/mboards/0/dboards/" + subdev_spec[0].db_name + "/" + tx_rx + "_eeprom";
const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access(db_path).get();
return db_eeprom.serial;
}
/***********************************************************************
* Store data to file
**********************************************************************/
static void store_results(
const std::vector &results,
const std::string &XX, // "TX" or "RX"
const std::string &xx, // "tx" or "rx"
const std::string &what, // Type of test, e.g. "iq",
const std::string &serial)
{
//make the calibration file path
fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / "cal";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / str(boost::format("%s_%s_cal_v0.2_%s.csv") % xx % what % serial);
if (fs::exists(cal_data_path))
fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL)));
//fill the calibration file
std::ofstream cal_data(cal_data_path.string().c_str());
cal_data << boost::format("name, %s Frontend Calibration\n") % XX;
cal_data << boost::format("serial, %s\n") % serial;
cal_data << boost::format("timestamp, %d\n") % time(NULL);
cal_data << boost::format("version, 0, 1\n");
cal_data << boost::format("DATA STARTS HERE\n");
cal_data << "lo_frequency, correction_real, correction_imag, measured, delta\n";
for (size_t i = 0; i < results.size(); i++)
{
cal_data
<< results[i].freq << ", "
<< results[i].real_corr << ", "
<< results[i].imag_corr << ", "
<< results[i].best << ", "
<< results[i].delta << "\n"
;
}
std::cout << "wrote cal data to " << cal_data_path << std::endl;
}
/***********************************************************************
* Data capture routine
**********************************************************************/
static void capture_samples(
uhd::usrp::multi_usrp::sptr usrp,
uhd::rx_streamer::sptr rx_stream,
std::vector &buff,
const size_t nsamps_requested)
{
buff.resize(nsamps_requested);
uhd::rx_metadata_t md;
// Right after the stream is started, there will be transient data.
// That transient data is discarded and only "good" samples are returned.
size_t nsamps_to_discard = usrp->get_rx_rate() * 0.001; // 1ms to be discarded
std::vector discard_buff(nsamps_to_discard);
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = buff.size() + nsamps_to_discard;
stream_cmd.stream_now = true;
usrp->issue_stream_cmd(stream_cmd);
size_t num_rx_samps = 0;
// Discard the transient samples.
rx_stream->recv(&discard_buff.front(), discard_buff.size(), md);
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE)
{
throw std::runtime_error(str(boost::format(
"Receiver error: %s"
) % md.strerror()));
}
// Now capture the data we want
num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);
//validate the received data
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE)
{
throw std::runtime_error(str(boost::format(
"Receiver error: %s"
) % md.strerror()));
}
//we can live if all the data didnt come in
if (num_rx_samps > buff.size()/2)
{
buff.resize(num_rx_samps);
return;
}
if (num_rx_samps != buff.size())
throw std::runtime_error("did not get all the samples requested");
}
/***********************************************************************
* Setup function
**********************************************************************/
static uhd::usrp::multi_usrp::sptr setup_usrp_for_cal(std::string &args, std::string &subdev, std::string &serial)
{
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
// Configure subdev
if (!subdev.empty())
{
usrp->set_tx_subdev_spec(subdev);
usrp->set_rx_subdev_spec(subdev);
}
UHD_MSG(status) << "Running calibration for " << usrp->get_tx_subdev_name(0) << std::endl;
serial = get_serial(usrp, "tx");
UHD_MSG(status) << "Daughterboard serial: " << serial << std::endl;
//set the antennas to cal
if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL"))
throw std::runtime_error("This board does not have the CAL antenna option, cannot self-calibrate.");
usrp->set_rx_antenna("CAL");
usrp->set_tx_antenna("CAL");
//fail if daughterboard has no serial
check_for_empty_serial(usrp);
//set optimum defaults
set_optimum_defaults(usrp);
return usrp;
}
/***********************************************************************
* Function to find optimal RX gain setting (for the current frequency)
**********************************************************************/
UHD_INLINE void set_optimal_rx_gain(
uhd::usrp::multi_usrp::sptr usrp,
uhd::rx_streamer::sptr rx_stream,
double wave_freq = 0.0)
{
const double gain_step = 3.0;
const double gain_compression_threshold = gain_step * 0.5;
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_tone_freq = actual_tx_freq - actual_rx_freq + wave_freq;
const size_t nsamps = size_t(actual_rx_rate / default_fft_bin_size);
std::vector buff(nsamps);
uhd::gain_range_t rx_gain_range = usrp->get_rx_gain_range();
double rx_gain = rx_gain_range.start() + gain_step;
double curr_dbrms = 0.0;
double prev_dbrms = 0.0;
double delta = 0.0;
// No sense in setting the gain where this is no gain range
if (rx_gain_range.stop() - rx_gain_range.start() < gain_step)
return;
// The algorithm below cycles through the RX gain range
// looking for the point where the signal begins to get
// clipped and the gain begins to be compressed. It does
// this by looking for the gain setting where the increase
// in the tone is less than the gain step by more than the
// gain compression threshold (curr - prev < gain - threshold).
// Initialize prev_dbrms value
usrp->set_rx_gain(rx_gain);
capture_samples(usrp, rx_stream, buff, nsamps);
prev_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate);
rx_gain += gain_step;
// Find RX gain where signal begins to clip
while (rx_gain <= rx_gain_range.stop())
{
usrp->set_rx_gain(rx_gain);
capture_samples(usrp, rx_stream, buff, nsamps);
curr_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate);
delta = curr_dbrms - prev_dbrms;
// check if the gain is compressed beyone the threshold
if (delta < gain_step - gain_compression_threshold)
break; // if so, we are done
prev_dbrms = curr_dbrms;
rx_gain += gain_step;
}
// The rx_gain value at this point is the gain setting where clipping
// occurs or the gain setting that is just beyond the gain range.
// The gain is reduced by 2 steps to make sure it is within the range and
// under the point where it is clipped with enough room to make adjustments.
rx_gain -= 2 * gain_step;
// Make sure the gain is within the range.
rx_gain = rx_gain_range.clip(rx_gain);
// Finally, set the gain.
usrp->set_rx_gain(rx_gain);
}