// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include #include #include namespace fs = boost::filesystem; struct result_t{double freq, real_corr, imag_corr, sup;}; /*********************************************************************** * Constants **********************************************************************/ static const double tau = 6.28318531; static const double alpha = 0.0001; //very tight iir filter static const size_t wave_table_len = 8192; static const size_t num_search_steps = 5; static const size_t num_search_iters = 7; static const size_t skip_initial_samps = 20; /*********************************************************************** * Sinusoid wave table **********************************************************************/ static inline std::vector > gen_table(void){ std::vector > wave_table(wave_table_len); for (size_t i = 0; i < wave_table_len; i++){ wave_table[i] = std::polar(1.0, (tau*i)/wave_table_len); } return wave_table; } static inline std::complex wave_table_lookup(const size_t index){ static const std::vector > wave_table = gen_table(); return wave_table[index % wave_table_len]; } /*********************************************************************** * Compute power of a tone **********************************************************************/ static inline double compute_tone_dbrms( const std::vector > &samples, const double freq //freq is fractional ){ //shift the samples so the tone at freq is down at DC std::vector > shifted(samples.size() - skip_initial_samps); for (size_t i = 0; i < shifted.size(); i++){ shifted[i] = std::complex(samples[i+skip_initial_samps]) * std::polar(1.0, -freq*tau*i); } //filter the samples with a narrow low pass std::complex iir_output = 0, iir_last = 0; double output = 0; for (size_t i = 0; i < shifted.size(); i++){ iir_output = alpha * shifted[i] + (1-alpha)*iir_last; iir_last = iir_output; output += std::abs(iir_output); } return 20*std::log10(output/shifted.size()); } /*********************************************************************** * Write a dat file **********************************************************************/ static inline void write_samples_to_file( const std::vector > &samples, const std::string &file ){ std::ofstream outfile(file.c_str(), std::ofstream::binary); outfile.write((const char*)&samples.front(), samples.size()*sizeof(std::complex)); outfile.close(); } /*********************************************************************** * Store data to file **********************************************************************/ static void store_results( uhd::usrp::multi_usrp::sptr usrp, const std::vector &results, const std::string &XX, const std::string &xx ){ //extract eeprom serial uhd::property_tree::sptr tree = usrp->get_device()->get_tree(); const uhd::fs_path db_path = "/mboards/0/dboards/A/" + xx + "_eeprom"; const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access(db_path).get(); if (db_eeprom.serial.empty()) throw std::runtime_error(XX + " dboard has empty serial!"); //make the calibration file path fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd"; fs::create_directory(cal_data_path); cal_data_path = cal_data_path / "cal"; fs::create_directory(cal_data_path); cal_data_path = cal_data_path / (xx + "_fe_cal_v0.1_" + db_eeprom.serial + ".csv"); if (fs::exists(cal_data_path)){ fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL))); } //fill the calibration file std::ofstream cal_data(cal_data_path.string().c_str()); cal_data << boost::format("name, %s Frontend Calibration\n") % XX; cal_data << boost::format("serial, %s\n") % db_eeprom.serial; cal_data << boost::format("timestamp, %d\n") % time(NULL); cal_data << boost::format("version, 0, 1\n"); cal_data << boost::format("DATA STARTS HERE\n"); cal_data << "lo_frequency, iq_correction_real, iq_correction_imag, measured_suppression\n"; for (size_t i = 0; i < results.size(); i++){ cal_data << results[i].freq << ", " << results[i].real_corr << ", " << results[i].imag_corr << ", " << results[i].sup << "\n" ; } std::cout << "wrote cal data to " << cal_data_path << std::endl; }